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1 Introduction

Over words or trees, recognizability is equivalent to definability in monadic
second-order logic. For this reason, in a context where algebraic foundations
are not settled, MSOL takes the role of the expressivity yardstick. In our
quest for algebraic understanding of tree languages the main question is
what should be the set of basic operators. Forest algebras [BW07] give
one possible answer: concatenation of contexts, and application of contexts
to trees. In this deliverable we show a result suggesting that going to a
richer formalism may shed a new light on the question. Indeed, Muchnik
iteration, that is one of the basic operations in theory of recognizability of
tree languages, turns out to be a special case of evaluation operation on λ-
terms. Since, moreover, trees can be seen as particular λ-terms, this suggest
that the basic operations λ-calculus, that is abstraction and application, can
serve also as the basis for recognizability of tree languages. We have pursued
this line of research in other works that are the part of FREC project [SW14]
(see deliverables in Task 3).

Rice theorem tells us that no non-trivial property of the behaviour of
a Turing machine can be decided by looking at the machine itself. Her we
consider a much simpler abstract computing system: simply-typed lambda-
calculus with fixpoint operators. We denote it λY . A behaviour of a λY -
term is its Böhm tree. Since not all λY -terms have normal forms, Böhm tree
is a standard choice for the result of a computation of a term. To express
properties of results we use monadic second-order logic (MSOL) because it
is a fundamental logic over trees. The transfer theorem we prove says that
every MSOL property of Böhm trees is effectively an MSOL property of
terms. In other words, we show that MSOL is compatible with evaluation.

The λY -calculus is a standard formalism in the lambda-calculus com-
munity. It can be seen as a simplification of the programming language
PCF introduced by Plotkin [Plo77]. It is much simpler than the full, un-
typed, lambda-calculus. For example, it is decidable if a λY -term has a
normal form, while the same question for untyped lambda-calculus is unde-
cidable. Still, λY -calculus has some nontrivial computational power. For
example, the problem of deciding if two λY -terms are equivalent is undecid-
able [Sta04]. By now, it is usual [Bar84] to approach the semantics of the
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lambda-calculus through infinite Böhm trees. Such a tree is just a normal
form of the term, if the term has one. Otherwise it is a potentially infinite
tree representing the visible part of the infinite computation of the term.
We will consider also infinite λY -terms. This is less standard but introduces
relatively few complications while bringing real strengthening of the main
theorem.

Under a different syntax λY -calculus has also been intensively stud-
ied by language theoretic community. One can cite the PhD thesis of
Fisher [Fis68] on macro languages, the work of Engelfriet and Schmidt
on IO and OI [ES77, ES78], or the work of Damm on (safe) recursive
schemes [Dam82]. More recently Knapik, Niwinski and Urzyczyn [KNU02]
considered recursive schemes as generators of infinite trees, and studied the
model-checking problem for such trees. After a series of intermediate re-
sults [AdMO05, KNUW05, Aeh07]; Ong [Ong06] has shown that the model-
checking problem of MSOL properties for such trees is decidable. It has
been already clear to Engelfriet and Schmidt as well as to Damm that the
grammars, or recursive schemes they study are a different representation
of λY -terms (and their subclasses). Indeed, trees generated by recursive
schemes are just Böhm trees of the corresponding terms of λY -calculus. So,
for example, the theorem of Ong can be rephrased as saying that Böhm
trees of finite λY -terms have a decidable MSOL theory. The transfer theo-
rem presented below implies this decidability result.

Our transfer theorem says that for a fixed finite vocabulary of terms, an
MSOL formula ϕ can be effectively transformed into an MSOL formula ϕ̂
such that for every term M over the fixed vocabulary: M satisfies ϕ̂ iff the
Böhm tree of M satisfies ϕ. The result is stronger than Ong’s theorem in
at least two aspects. First, it holds also for infinite λY -terms. Second, and
more importantly, the theorem gives an effective reduction of one theory
to another. For example, since finiteness of a tree is definable in MSOL,
we immediately obtain that if we restrict to λY -terms over a fixed finite
vocabulary then the set of terms having a (finite) normal form is MSOL
definable. In the last section of the report we give several other applications
of additional power provided by the transfer theorem.

In terminology of Courcelle [Cou94], our result says that evaluation of
λY -terms is MSOL-compatible. A flagship example of a result of this kind
is MSOL-compatibility of the unfolding operation [CW98]. A finite automa-
ton, i.e. a graph, can be unfolded into a tree of all its possible executions:
this tree can be seen as the evaluation of the automaton. The MSOL-
compatibility of the unfolding means that the MSOL theory of this tree can
be effectively reduced to MSOL theory of the automaton itself. The more
powerful Muchnik iteration [Sem84, Wal02a] allows to get a similar result
for pushdown automata and higher-order pushdown automata. This way we
obtain the pushdown hierarchy of trees with a decidable MSOL theory. Here
we consider λY -terms instead of automata as a computational model, and
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show the analogous result for evaluation instead of unfolding or Muchnik
iteration. The operation of evaluation cannot be directly compared to the
other two since it works on different objects (trees with back edges instead
of graphs). Yet in a well-known context where these operations can be com-
pared, the evaluation operation is strictly stronger. Indeed, every tree in
the pushdown hierarchy [Cau02] is a Böhm tree of some term, but not vice
versa [Par12].

Related work: This work can be seen as generalization of Ong’s theo-
rem, in the same way as compatibility of MSOL with unfolding is a general-
ization of Rabin’s theorem. Moreover the unfolding theorem is in some sense
also a special cases of our main theorem. Knapik and Courcelle [CK02a] have
used the unfolding theorem to prove a special case of our theorem for infinite
terms of order 1. The proof presented here is based on our proof of Ong’s
theorem using Krivine machines [SW11].

MSOL properties of higher-order systems are an active area of research.
After the seminal paper of Knapik, Niwinski and Urzyczn[KNU02]; Caucal
has introduced the pushdown hierarchy [Cau02] that since has been an object
of intensive study from logical point of view [CW03]. It has been shown
that many interesting properties of higher-order programs can be analyzed
with recursive schemes and automata [Kob09b, Kob09a, Kob09c, KO11,
OR11]. The decidability result of Ong has been revisited in a number of
ways [HMOS08, KO09, SW11, BCHS12].

The study of MSO-compatible operations has a long history. Following
a result of Feferman and Vaught for products [FV59], Shelah has introduced
and extensively used MSO-compatibility of sums [She75]. Later Stupp pro-
posed an iteration operator, and showed that it is MSO-compatible [Stu75].
Rabin’s theorem [Rab69] on decidability of MSOL on infinite binary trees is
an immediate corollary of this result. Much later Muchnik has proposed
a strengthening of Stupp’s iteration, and sketched the proof of MSOL-
compatibility of this operation [Sem84]. Courcelle and Walukiewicz have
shown MSOL-compatibility of the unfolding operation [CW98] not using
Muchnik iteration. Later Walukiewicz has given a detailed proof of MSOL-
compatibility of Muchnik iteration [Wal02a]. This result has then been
extended and adapted to other logics [BK05, KL06, Kus08]. For a survey of
compatible operations and their applications we refer the reader to [BCL08]

Plan of the report: In the next section we introduce infinitary λY -
calculus: a simply typed λ-calculus of infinite terms with fixpoint operators.
Extensions of untyped lambda-calculus to infinite terms are rather deli-
cate [KdV03]. Here we have made some design choices that together with
the use of typing allow to retain the fundamental properties in a relatively
straightforward way. We prove that Böhm trees are still the canonical val-
ues for infinite λY -terms. We also adapt Krivine machine to compute Böhm
trees of infinite terms. More precisely, the machine computes Lévy-Longo
trees of terms, but for terms we are interested in the two notions coincide.
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Finally, we introduce the notion of canonical form of a term.
Section 3 presents the main theorem. For this it describes how terms

are represented as logical structures so that we can talk about their MSOL
properties. Our representation requires that we have a fixed finite set of
λ-variables. At the same time we do not need to restrict the number of
Y -variables. We show that the theorem is not likely to hold if the number of
λ-variables in not fixed. The overview of the proof of the theorem is given
in the following section.

Section 5 gives three applications of transfer theorem. We explain how to
obtain formulas expressing computational properties of terms. We show de-
cidability of higher-order matching for terms over a fixed vocabulary [SS03].
We present a synthesis result that allows to construct λY -programs from
λY -modules.

In the conclusion section we give more relations between the transfer
theorem and other results in the literature.

2 Infinitary λY -calculus

In this paper, we work with infinitary simply typed λY -calculus with fix-
points. We refer to it as infinitary λY -calculus, sometimes omitting the
adjective “infinitary”. In rare cases when we want terms to be finite, we say
it explicitly. This section introduces infinitary simply typed λY -calculus
as a rather straightforward generalization of finitary λY -calculus. We start
with the notion of infinitary terms together with the operational semantics
of the infinitary λY -calculus. We adopt a slightly modified syntax where
Y is used as a variable binder rather than as a combinator. This allows us
to distinguish between the variables that may be bound by Y from those
that may be bound by λ. Such a distinction is of a little importance for the
calculus itself, but it will allow us to get a more general theorem later when
we will put restrictions on the number of variables. Next, we define the
notion of Böhm trees. As it can be expected, Böhm trees are actual normal
forms of infinitary terms, and every infinitary term has a normal form. Af-
terwards, we introduce a particular class of terms, that will be useful in the
proof of the main theorem: terms in canonical form. Finally, we introduce a
slight extension of the Krivine machine that is able to compute the normal
forms of infinitary λY -terms, thus giving an actual computational content
to infinitary λY -terms. The notion of Krivine machine we use is tailor-made
so as to work on terms in canonical form.

2.1 Syntax and operational semantics

The set of types is constructed from a unique basic type 0 using a binary
operation →. Thus 0 is a type and if α, β are types, so is (α → β). As
usual, so as to use less parentheses, we consider that → associates to the
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right. For example, 0 → 0 → 0 stands for (0 → (0 → 0)). We will write
0i → 0 as short notation for 0 → 0 → · · · → 0 → 0, where there are i + 1
occurrences of 0. The order of a type is defined by: order(0) = 1, and
order(α→ β) = max(1 + order(α), order(β)).

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types. Of special interest to us will be tree signatures where all
constants other than the special constant Ω have order at most 2. Observe
that types of order 2 have the form 0i → 0 for some i. For simplicity of
notation we will always assume that i = 2, but of course our results do not
depend on this convention.

The terms will be built over two disjoint countable sets of typed variables:
λ-variables and Y -variables. We shall write xα for a λ-variable of type α,
and xα for a Y -variable of type α. In this paper, we work with potentially
infinite λY -terms. We assume that for every type α we have a constant Ωα

to denote the undefined term of type α. We will also have typed application
symbols @α, and typed binders Y α as well as λα→β. For all types α we
define simultaneously the sets of infinite terms of type α as trees satisfying
the following conditions.

• A node labelled by Ωα, xα, xα, or cα is a term of type α.

• A tree with the root labelled @β having as the left subtree a term of
type α→ β and as a right subtree a term of type α, is a term of type
β.

• A tree with the root labelled λα→βxα with the unique immediate sub-
tree being a term of type β, is a term of type α→ β.

• A tree with a root labelled Y αxα with the unique immediate subtree
being a term of type α, is a term of type α.

Some examples of infinitary λY -terms, as well as trees that are not terms,
are presented in Figure 2.1.

Notice that all variables and constructors carry type labeling that makes
typing of a term unique. We shall often omit those labels when they are
unnecessary for the understanding or when they can be inferred from the
context. We will also use standard conventions and write (MN) for M @N ,
and N0N1 . . . Np for (. . . (N0N1) . . . Np).

We assume the usual notions of free and bound variables. Moreover,
in general, we work up to the renaming of bound variables, that is up to
α-conversion of terms. On infinitary terms, this convention is not really
innocent since a term may contain infinitely many free variables. Never-
theless, a careful use of de Bruijn indices is, as in the finite case, a way to
represent equivalence classes of terms modulo α-conversion. However, in the
sequel, we are going to work sometimes on particular representatives of α-
equivalence classes assuming certain properties on the naming of variables
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such as the Barendregt convention on Y -variables (every Y -binders binds
a distinct Y -variable), and the use of finitely many λ-variables. To make
things clear, when working up to α-conversion, we will speak about terms,
and when working on particular instances of α-equivalence classes, we will
speak about concrete terms.

This definition of infinitary terms comes with two main differences with
respect to the usual one given for the untyped infinitary calculus. First, the
typing discipline rules out terms with infinite sequences of λ-abstractions
(cf. Figure 2.1). The second difference is that we use the Y combinator as a
binder and we distinguish between Y -variables and λ-variables. Notice that
the definition of infinitary terms allows infinite sequences of Y -abstractions
(cf. Figure 2.1).

The reason why we need to distinguish between λ-variables and Y -
variables is that the main theorem we prove is about terms which use finitely
many λ-variables but possibly infinitely many Y -variables. As a small re-
mark, if the main theorem did not need to make this assumption, we could
simply get rid of Y -binders. Indeed the term Y x.N has the same Böhm tree
(see section 2.2) as the term rec(λx.N [x/x]) where rec = λf.f(f(f(f . . . ))).
This shows that λ-abstraction, or parameter instantiation, is more powerful
than recursive definition in the context of the infinitary λ-calculus.

Terms

Y x.

Y x.

Y x.

@

@

x

x

Y x.

λz.

@

@

z

x

Non-term

λx.

λx.

λx.

Figure 1: Examples of infinitary terms and non-terms

The notion of capture-avoiding substitution can be easily extended to
infinitary λ-calculus. Given two terms M and N we shall write M [x := N ]
(resp. M [x := N ]) for the result of the capture-avoiding substitution of N
for the free occurrences of x (resp. x) in M . It is important to notice that
x or x may have infinitely many free occurrences in M , and that computing
the result of M [x := N ] or of M [x := N ] may require an infinite amount
of work. This is why, following a suggestion made in Terese [], we will use
the Krivine machine later on so as to compute substitutions explicitly and
to avoid the infinite overhead of computation that each substitution may
require if it were to be completely performed.

We may now define β-contraction on infinitary terms as the straightfor-
ward extension of β-contraction on finite terms. Concerning δ-contraction,
we need to adapt its definition to our slightly modified syntax. The rela-
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tion of δ-contraction →δ is the smallest relation that is compatible with the
syntax of infinitary λY -calculus and so that Y x.M δ-contracts to M [x :=
Y x.M ]. We let βδ-contraction, →βδ to be the union of the relations →β

and →δ. Of course, the subject reduction property for simple types trans-
fers from finite terms to infinite ones so that the reduction preserves typing.
As we are interested in infinitary terms as computational devices, we need
to choose what we consider to be a value or the output of the computa-
tion performed by those terms. We thus introduce the notion of weak head
normal form and of weak head reduction.

Definition 1 An infinitary term M is in weak head normal form, if it is of
the form λxα.N for some term N , or if it is of the form hN1 . . . Nn, with h
being either a variable or a constant different from Ω.

When M is an infinitary term of the form (λx. P )P1 . . . Pn or of the
form (Y x. P )P1 . . . Pn, then M has a head-redex. Reducing M to P [x :=
P1]P2 . . . Pn or to P [x := Y x.P ]P1 . . . Pn, respectively, is called head-con-
tracting M . We write M →h N when M head-contracts to N ; we write
M →∗h N for head-reduction in some finite number of head-contraction
steps.

The reason why, we wish to use weak-head normal forms for values instead
of the usual notion of head-normal form is that we are going to use the
Krivine machine to compute values. Krivine machine computes weak-head
normal forms of terms and not head-normal forms.

2.2 Böhm trees

Now that we have settled a reduction strategy together with a notion of
value, we may define a notion of normal form for infinitary terms, namely
Böhm trees. We also show that in a strong sense Böhm trees are actual
normal forms of infinitary terms. There is no particular difficulty to define
the notions of this subsection for all infinite λY -terms. Yet, since we consider
infinitary λY -terms as generators of infinite trees, we are really interested
only in closed terms of type 0. We choose to present the definitions only for
such terms. In order to further simplify the notation we will from the start
consider only terms over a tree signature, and assume that all the constants
are binary.

Definition 2 (Böhm trees) Given a closed term M of type 0 over tree
signature, we define its Böhm tree, BT (M), as follows:

1. if M →∗h bN1N2 where b is a constant different from Ω, then BT (M)
is a tree with root labelled b and with BT (N1) and BT (N2) as its
subtrees.

2. otherwise BT (M) = Ωα.
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Observe that in our case Böhm trees are just labelled infinite binary trees.
In a sense that can be made precise, Böhm trees are normal forms of terms.
As such they are terms too, but due to their special shape we do not need
to use application nodes to represent them. In Figure 2 we present a Böhm
tree and its representation as a term.

The reader may be surprised that we talk about Böhm trees while in
general Krivine machines compute Lévy-Longo trees. It turns out that the
two notions coincide when working with tree signatures and terms of type
0. This is why we have preferred to use the better known notion.

a

b c

@

@

a @

@

b

@

@

c

Figure 2: Böhm tree and the associated term

Even though we have defined Böhm trees (or Lévy-Longo trees) using
a particular reduction strategy, they really are the unique normal forms of
infinitary terms modulo βδ-reductions of arbitrary ordinal length provided
we add the reduction rule that allows to reduce terms without weak head
normal form to Ω. We are using the end of this section to establish this fact.

The results we are about to show are known in the literature on untyped
infinitary λ-calculus (see Kennaway et al. [KKSdV97] and Terese [KdV03]).
We here adapt those results to the simply typed λY -calculus and we present
them in way that suits better our needs. Notice that, even though we have
defined Böhm trees only for closed terms of atomic types built on a tree
signature, all the results we mention here hold without those restrictions.

As we are working with infinite terms, computing their possible normal
forms may require an infinite number of βδ-contraction steps. For example
the term that is defined as the solution of the equation u = (λz0.az0)u that
can be depicted as:

@

(λzo.azo) @

(λzo.azo) @

(λzo.azo)
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requires to reduce ω redices so a to obtain the term that is the solution of
the equation v = av:

@

a @

a @

a

If we were to reduce the term (λx0.bx0)u we may first reduce u in ω steps
to v and we would obtain a term (λx0.bx0)v that can be reduced to bv
with one more step. With this example we have constructed a reduction
of length ω + 1. It thus appears natural to define reductions of arbitrary
ordinal length. The natural way of defining such sequences of reductions
is to define them as continuous functions from ordinals to λ-terms. This is
one of the reason why we need the constants Ωα as part of our language for
defining infinitary terms. The constants Ωα stands for the undefined term
of type α and allows us to define a natural partial order on infinitary terms.
This is the least order v that is compatible with the syntax and so that for
every term M in Λα,∞(Ω), Ωα vM . Notice that, whenever M v N , M and
N need to be terms that have the same types.

Definition 3 Given a relation R on λ-terms and an ordinal γ, a γ,R-
reduction sequence of type α is a function ϕ that maps ordinals δ ≤ γ
to infinitary terms of Λα,∞(Ω) so that:

1. if δ < γ, we have ϕ(δ) R ϕ(δ + 1),

2. if δ ≤ γ is a limit ordinal, then for every term M v ϕ(δ) there is an
ordinal θ < δ so that M v ϕ(θ).

When R =→βδ, and there is a α,→βδ-sequence ϕ such that ϕ(0) = M and

ϕ(α) = N we write that M
α−→∞ N , or we write M −→∞ N when there is

α such that M
α−→∞ N . The notion of reduction sequences we use is called

weakly convergent in the literature.

It is already known that in the untyped case infinitary β-reduction is
not Church-Rosser. Typing does not fix this problem and it is easy to adapt
the examples of the untyped case to the typed case. Indeed, if we take the
terms I = λx0.x0, M = λx0.I(f0→0x0) and J = λx0.f0→0x0, then the term
(Y f0→0.M)x0 we can be reduced in the following ways:

(Y f0→0.M)x0 −→∞ λx0.I(Y f0→0.Mx0)
−→∞ (λx0.I((λx0.I(Y f0→0.Mx0))x0))x0

−→∞ I(I(Y f0→0.Mx0)
−→∞ Iω
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where Iω is the term satisfying the syntactic identity IIω = Iω and Iω can
be depicted by:

@

I @

I @

I

The term (Y f0→0.M)x0 can also be reduced as follows:

(Y f0→0.M)x0 −→∞ (λxo.(Y f0→0.J)x0)x0 −→∞ (λx0.(Y J)x0)x0 ω−→∞ u

where u is the infinite term verifying the syntactic identity u = (λx0.u)x0

and that is depicted by:

@

λx0.

@

λx0. x0

x0

Since, for any redex that is contracted in Iω the result of the contraction
is Iω again and similarly u can only be reduced to u, it is obvious that
there is no term P so that Iω −→∞ P and u −→∞ P . Nevertheless we do
not assume that those terms are meaningful values, we rather assume that
meaningful values are terms in weak-head normal forms.

With this notion of value we may enrich the our operational semantics
with a reduction to Ω for terms that do not yield a value.

Definition 4 We introduce the relation →Ω, the Ω-contraction, so that,
given a term M of Λα,∞(Ω0), if there is no term N in weak-head normal
from so that M −→∞ N , then M →Ω Ωα. We let →βδΩ be the union of
→βδ and →Ω.

When there is a α,→βδΩ-sequence ϕ such that ϕ(0) = M and ϕ(α) = N

we write that M
α−→Ω,∞ N , or we write M −→Ω,∞ N when there is α such

that M
α−→Ω,∞ N .

The operational semantics −→Ω,∞ on infinitary terms has nice properties,
and in particular it has the Church-Rosser property (it is a consequence of
Terese [] Theorem 12.9.6 p.699).

Theorem 5 If M −→Ω,∞ N1 and M −→Ω,∞ N2, then, there is P so that
N1 −→Ω,∞ P and N2 −→Ω,∞ P .
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This confluence property is partially grounding the fact that Böhm trees
of terms are their normal forms in proving that every term has a unique
normal form. It remains to see that these unique normal forms are the
Böhm trees. The main problem is that there is a gap between the relation
→Ω which may reduce a term M to Ω only when there is no infinitary
reduction that turns M into a weak-head normal form while the Böhm tree
of a term M is Ω when there is no finite head-reduction that turns M into a
weak-head normal form. This is precisely this gap that Lemma 6 is filling.
We now give its proof.

Lemma 6 Given M in Λα,∞(Ω), if there a term N in weak-head normal
form so that M −→∞ N , then there is k < ω and P in weak-head normal

form so that M
k−→h,∞ P .

Proof
Let γ be an ordinal so that M

γ−→∞ N and let ϕ be the γ,→βδ-reduction
sequence reducing M to N . In case γ < ω, it is easy to see that there
is a finite term M ′ v M which can be put in finitely many steps of head-
contraction in weak-head normal form P ′. Therefore preforming those head-
contraction steps on M allows to obtain a term P so that P ′ v P , and
therefore P is also in weak-head normal form.

In case γ ≥ ω, there is a finite ordinal k and a limit ordinal γ′ so that

γ = γ′ + k. Let P = ϕ(γ′), we have that P
k−→∞ N . As N is in weak-

head normal form, there is a finite term P ′ so that P ′ v P so that P ′

head-reduces in finitely many steps to P ′′ which is in weak-head normal
form. By definition of γ,→βδ-reduction sequences, there is θ < γ′ so that
P ′ v ϕ(θ). As a consequence, ϕ(θ) head-reduces in finitely many steps to a
weak-head normal form. Thus, by transfinite induction, M head-reduces to
a weak-head normal form in finitely many steps. �

We can now state that Böhm trees are normal forms of infinitary term
and that they may be computed with at most ω steps of βδΩ-contraction
(this is also a consequence of Corollary 12.9.15 p.701 in Terese [KdV03]).
This also gives Böhm trees an actual computational content since it shows
that, provided an infinitary term is given in some effective manner, its Böhm
tree can be computed. Hereafter, we use the Krivine machine as an actual
device performing this computation.

Theorem 7 Given M in Λα,∞(Ω), there an ordinal γ ≤ ω so that M
γ−→Ω,∞

BT (M).

2.3 Canonical terms

Infinitary terms may contain infinitely many free λ-variables. But, as we
already said, we are interested in closed terms and the subterms of closed
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terms contain only finitely many free λ-variables. Thus, from now on, we
restrict our attention to terms with finitely many free λ-variables.

It will be convenient to work with terms in what we call canonical form.
This form permits to separate λ-variables from Y -variables making recursion
and parameter instantiation isolated in a way that will prove useful.

Definition 8 An infinitary term M is in a canonical form when none of its
subterms of the form Y x. N contains a free λ-variable.

There is a simple process, that transforms every term M with a finite
set of free λ-variables into a canonical form. For this it suffices to abstract
away free λ-variables in every subterm Y x. N of M . More precisely, if
{x1, . . . , xn} is the set of free λ-variables of N (which is necessarily finite)
we perform the replacement

Y x. N 7→ (Y y.λx1 . . . λxn.N [x := yx1 . . . xn])x1 . . . xn

With standard techniques based on approximations, it is rather direct to
show that the new term has the same Lévy-Longo tree as M .

Proposition 9 For every infinite closed λY -term M of type 0 over tree
signature the result of the above operation is a canonical term generating
the same Böhm tree.

2.4 Krivine machine

We are now going to introduce the notion of Krivine machine that will allow
us to compute the normal forms of infinite terms.

Since we wish to treat δ-contraction in a particular manner, we use
the Krivine machine to reduce a particular concrete canonical closed term
M of type 0. This means that the names of bound variables do matter –
actually they will matter only for Y -variables. We make this choice to avoid
the introduction of environments for Y -variables that would induce some
unnecessary notational burden. If we were to be completely rigorous, we
should parametrize each notion related to the Krivine machine with this
term M , and we should speak about M -Krivine machine, M -environments,
M -closures, M -configurations. . . As M will be always clear from the context
we will mention it explicitly only if necessary.

Let us fix for this section a concrete canonical term M of type 0. Working
with concrete terms gives us some control over Y -variables. We will assume
that in the term M every Y -binder binds a distinct Y -variable and that there
is no occurrence of Ω. This assumption on the names of Y -variables allows
us to stipulate the existence of a function term that maps a Y -variable xα

to the subterm Y xα.N of M where it is bound. In later sections, we will
represent terms as infinite graphs and the function term will be implemented
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directly with an edge between Y -binders and the positions they bind in the
term.

The Krivine machine [Kri07], is an abstract machine that computes the
weak head normal form of a term, using explicit substitutions, called envi-
ronments. Environments are functions assigning closures to variables, and
closures themselves are pairs consisting of a term and an environment. This
mutually recursive definition is schematically represented by the grammar:

C ::= (N, ρ) ρ ::= ∅ | ρ[x 7→ C] .

As in this grammar, we will use ∅ for the empty environment. The notation
ρ[x 7→ C] represents the environment which associates the same closure as
ρ to variables except for the variable x that it maps to C. The terms N
that can be used to form a closure must be subterms of the term M we are
considering. This restriction is harmless since, when computing the normal
form of M , the Krivine machine only needs closures made with subterms of
M (see Theorem 12).

Since we work within a typed context, these two notions follow the typing
discipline: in an environment the types of a variable and the closure it is
assigned to must be the same. The type of a closure (N, ρ), is simply the
type of the term N . We require that in a closure (N, ρ), the environment
is defined for every free λ-variable of N , while the values of Y variables are
given by term function.

Intuitively a closure C denotes a closed λ-term E(C) as follows. A
closure (N, ρ) denotes a λ-term obtained by substituting: (i) for every free
λ-variable x of N the term denoted by the closure ρ(x), and (ii) for every free
Y -variable x the term term(x). It is important to note that the definition
of an environment is inductive, so every environment has finite depth. More
precisely this means that every sequence of the form:

ρ0(x0) = (N1, ρ1), ρ1(x1) = (N2, ρ2), . . .

is finite and ends in the empty environment.
A stack S ≡ C1 . . . Cn is a possibly empty sequence of closures. We use

⊥ to denote the empty stack.
A configuration of a Krivine machine is a triple (N, ρ, S) where:

1. N is a term (a subterm of M);

2. ρ is an environment defined for all free variables of N ;

3. S is a stack C1 . . . Ck, where k and the types of the closures are deter-
mined by the type of N : the type of Ci is αi where the type of N is
α1 → · · · → αk → 0.
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A configuration (N, ρ, S) represents an infinitary term:

E((N, ρ, S)) = E(N, ρ)E(C1) . . . E(Cn)

where C1 . . . Cn are the closures on the stack S. Notice that the third con-
dition in the definition of configurations implies that E(N, ρ, S) needs to be
a term of type 0. Observe also that E(N, ρ, S) may not be a subterm of M
even though N as well as every term appearing in ρ, C1,. . . ,Cn is.

The transition rules of the Krivine machine are:

(λx.N, ρ, (K, ρ′)S)→(N, ρ[x 7→ (K, ρ′)], S)

(Y x.N, ρ, S)→(N, ρ, S)

(NK, ρ, S)→(N, ρ, (K, ρ)S)

(x, ρ, S)→(N, ρ′, S) where (N, ρ′) = ρ(x)

(x, ρ, S)→(term(x), ∅, S)

It is rather straightforward to check that these computation rules transform
configurations of the Krivine machine into configurations of the Krivine
machine. This means that the typing properties of environments and the
fact that only subterms of M are used in a closure or as the main term of
configuration is preserved by those reduction rules. The first two rules do
β-contraction and δ-contraction respectively. The application rule creates a
closure and puts it on the stack. The λ-variable rule looks up the meaning
of the variable in the environment. The Y -variable rule replaces the variable
by its definition. Since we work with concrete canonical terms, there are no
free λ-variables in term(x) so the environment can be discarded.

Notice that the terms reduced by the Krivine machine, that are in its
environment or on its stack are in general infinite terms which are inspected
with respect to their syntax. A more concrete, but equivalent way of repre-
senting the same thing would be to build the Krivine machine with addresses
in the infinite term and a call to an external mechanism so as to read its
labels.

We use the Krivine machine to compute a tree that, as we will see, is
the Böhm tree of the term. Recall that we consider only terms over tree
signatures and we assume that all the constants are binary (cf. page 5).

Definition 10 Let (N, ρ,⊥) be a configuration of the Krivine machine, with
N a term of type 0. We define the tree KT (N, ρ,⊥) as follows:

1. if started in (N, ρ,⊥) the machine reaches a configuration (b, ρ, C1C2)
where b is a constant and Ci = (Ni, ρi) are closures of type 0, then
KT (N, ρ,⊥) is a tree with the root labelled by b and two subtrees:
KT (N1, ρ1,⊥) and KT (N2, ρ2,⊥).
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2. in the other case KT (N, ρ,⊥) = Ω0.

We write KT (M) for KT (M, ∅,⊥).

The next lemma says that Krivine machine computes the weak head
normal form (that is the same as head normal form in our case).

Lemma 11 Let (N, ρ,⊥) be a configuration of the Krivine machine. Term
E(N, ρ,⊥) has a head normal form iff Krivine machine reduces (N, ρ,⊥) to
a configuration (b, ρ, S) for some constant b.

Proof
Recall that Lemma 6 guarantees that head reduction reaches a weak head
normal form if a term has one. We also know that Krivine machine per-
forms the head reduction. It suffices to examine in what configurations the
machine gets blocked. Looking at the rules we can see that there can be
only two kinds of configurations when no rule is applicable. The first is
(λx.N, ρ,⊥), but it is excluded by the third condition on configurations of
Krivine machine. The second is (h, ρ, S) where h is either a constant or a
variable that is not in the domain of definition of ρ. The case of a variable
is also excluded by the second condition on the form of configurations of the
Krivine machine. Hence the machine stops when it reaches a constant that
is the head of the normal form of E(N, ρ,⊥). �

Lemma 11 entails that the Krivine machine gives an effective way of
computing the Böhm tree of an infinitary term. The second statement of
the following theorem follows by a direct inspection.

Theorem 12 For a fixed tree signature Σ. For every concrete canonical
and closed λY -term M of type 0, we have BT (M) = KT (M). All the terms
appearing in configurations of the Krivine machine during the computation
of KT (M) are subterms of M .

3 Transfer theorem for evaluation

In this section we will investigate logical theories of terms and Böhm trees.
We will consider monadic-second order logic (MSOL) on such objects. For
this, it will be essential to restrict to some finite set of λ-variables: both
free and bound. On the other hand, we will be able to handle infinitely
many Y -variables. Once we make it clear how to represent terms and Böhm
trees as logical structures, we will state our main theorem. We will justify
our representation of terms by showing two facts: (i) the set of all terms is
definable in MSOL, (ii) unless the polynomial-time hierarchy collapses, the
main theorem is false when we do not fix the number of bound λ-variables.

Terms will be represented as labelled, potentially infinite, graphs. For us
here such a graph is a structure of the formM = 〈V, {Ei}i=1,2, {Pi}i=1,...,n〉,
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where V is the set of vertices, every Ei is a binary relation on vertices, and
every Pi is a subset of vertices. We will have two edge relations representing
left and right successor. In our case predicates Pi will be a partition of V .
So every vertex will have a unique label given by the predicate it belongs
too.

Monadic second-order logic (MSOL) is an extension of first-order logic
with quantification over sets of elements and the membership predicate x ∈
Z, where x is a variable ranging over elements, and Z is a variable ranging
over sets of elements. The definition of satisfiability of a formula ϕ in a
structure M, denoted M � ϕ, is standard.

Let us fix a tree signature Σ with finitely many constants other than
Ω. As postulated at the beginning of Section 2.1, for simplicity of notation
all the constants are binary. We would like to consider terms as models of
formulas of monadic second-order logic. We will work with terms over some
arbitrary but finite vocabulary. We take a finite set of typed λ-variables X =
{xα1

1 , . . . , xαkk }, and a finite set of types T . We denote by Terms(Σ, T ,X )
the set of infinite closed concrete terms1 M over the signature Σ such that
M uses only λ-variables from X , and every subterm of M has a type in T .
We also write CTerms(Σ, T ,X ) for the terms M of Terms(Σ, T ,X ) that are
in canonical form. Observe that bound λ-variables in M should come from
X . In contrast we do not put restrictions on the use Y -variables. It will be
convenient to assume that every Y -variable in M is bound at most once: for
every Y -variable x there is at most one occurrence of Y x in M .

A term from Terms(Σ, T ,X ) can be seen as a labelled tree where the
labels come from finite alphabet, but for the Y -variables and Y binders.
We will now eliminate the possible source of infiniteness of labels related to
Y -variables and Y binders. Take a closed term M considered as a tree. For
every node of this tree labelled by a Y -variable xα we put an E1-edge from
the node to the node labelled Y xα. Since M is closed, such a node exists
and is an ancestor of the node labelled by x; such a node is also unique since
we assume that every Y -variable is bound at most once. In the next step we
introduce a new symbol �α and for every node labelled with a Y -variable of
type α, we change its label to �α. Finally, we replace all labels of the form
Y xα by just Y α. This way we have eliminated all occurrences of Y -variables
from labels, but now a term is represented not as a labelled tree but as a
labelled graph. Let us denote it by Graph(M). Observe that the nodes of
this graph have labels from a finite set

Talph(Σ, T ,X ) = Σ ∪ {@α, Y α, �α: α ∈ T } ∪ X∪
{λα→βxα : α ∈ T ∧ α→ β ∈ T ∧ xα ∈ X} .

There are two edge relations, E1 and E2, in Graph(M) since nodes labelled
by application symbol have both left and right successor. The nodes with

1Recall that concrete terms are particular elements of α-equivalence classes.
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Figure 3: M and Graph(M)

other labels have no successor (nodes labeled with labels from Σ ∪ X ) or
just one successor, given by E1. The example of Graph(M) is presented in
Figure 3.

Since Graph(M) is a labelled graph over a finite alphabet it makes sense
to talk about satisfiability of an MSOL formula in this graph. We will
just write M � ϕ instead of Graph(M) � ϕ. The first easy, but important,
observation is that for fixed Σ, T , X , there is an MSOL formula determining
if a graph is of the form Graph(M) for some M ∈ Terms(Σ, T ,X ). Indeed,
in this case we deal with models over the signature consisting of two binary
relations E1, E2 and a unary relation Pb for every b ∈ Talph(Σ, T ,X ). The
formula should say that Pb form the partition of the set of vertices and then
express conditions from the definition of infinite λY -terms on page 5. These
conditions are clearly expressible in MSOL as they talk about dependencies
between labels of a node and its successors.

For a closed term M ∈ Terms(Σ, T ,X ) of type 0, its Böhm tree is a
tree with nodes labelled by symbols from Σ. Hence one can talk about
satisfiability of MSOL formulas in BT (M). The transfer theorem says that
the MSOL-theory of BT (M) is recursive in the MSOL-theory of M .

Theorem 13 (Transfer theorem) Let Σ be a finite tree signature, X a
finite set of typed variables, and T a finite set of types. For every MSOL
formula ϕ one can effectively construct an MSOL formula ϕ̂ such that for
every λY -term M ∈ Terms(Σ, T , X) of type 0:

BT (M) � ϕ iff M � ϕ̂.

Notice that the formula ϕ̂ is independent from M . This independence of ϕ̂
from M is what makes the essential difference between the transfer theorem
and Ong’s original theorem. In the course of proving his theorem, Ong
reduces the MSOL theory of the tree generated by a recursion scheme G
to the MSOL theory of an infinite λ-term λ(G) the computation tree of
G. Ong’s proof is based on the construction of an alternating parity tree
automaton (APT) C from an APT B such that B accepts the tree generated
by G iff C accepts the syntactic tree of λ(G). Nevertheless, the way C is
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constructed strongly depends on G. This dependence on G mainly comes
from the fact that any two λ-variables that have different binders in λ(G)
need to have different names and that the alphabet on which C operates
contains the names of those variables. A direct consequence being that C
cannot in general tell whether the infinite tree generated by a scheme G′ that
uses the same non-terminals as G is accepted by B. Indeed, the fact that
G′ uses more higher-order non-terminals induces that λ(G′) may need more
names of λ-variables than λ(G) and thus C is unable to read them. This is
clearly different from our transfer theorem for which the number of higher-
order Y -variables (that are representations of non-terminals) need not be
constrained, it is only the types of those variables that are constrained. In
particular, one can easily see that if we fix a finite set of types T and that we
consider the class ST of schemes which use non-terminals whose types are in
T , then there is a finite set of variables X so that for every G in ST , there is
an infinite term MG that is α-convertible λ(G) and that only uses variables
from X . The transfer theorem then implies that for a given formula ϕ and a
finite set of types T , there is a formula ϕ̂ so that for every scheme G whose
non-terminal have types coming from T , the tree generated by G satisfies
ϕ iff MG satisfies ϕ̂; while the formulation of Ong’s result in this context
would be for every MSOL formula ϕ, for every scheme G, there is a MSOL
formula ϕG so that the tree generated by G satisfies ϕ iff λ(G) satisfies ϕG.

Lemma 14 Given a finite set of types T , for every MSOL formulae ϕ, there
is an MSOL formula ϕ̂ such that for every scheme G, if MG is the λY -term
representing G following [SW12b] then BT (MG) |= ϕ iff MG |= ϕ̂.

To contrast further the difference between the transfer theorem and
Ong’s theorem, we can use a that a variant of the global model checking
problem is a direct consequence of the transfer theorem. Given a finite
λY -term M , this variant consists in checking, uniformly whether, given a
configuration of the Krivine machine (N, ρ, S) built using subterms of M ,
KT (N, ρ, S) satisfies a formula ϕ. From the transfer theorem, we know
that there is a formula ϕ̂ so that for every term N that uses the same
λ-variables {x1, . . . , xn} as M , N |= ϕ̂ iff BT (N) |= ϕ. Given a closure
(N, ρ), it represents the term N, ρ = (λx1 . . . xn.N)ρ(x1) . . . , ρ(xn). Now a
configuration of the Krivine machine K = (N, ρ,C1 . . . Cn) represents the
term K = N, ρC1 . . . Cn. Now given a configuration of the Krivine machine
K built using subterms of M , we have BT (K) = KT (K) and moreover
since K is built with subterms of M , the λ-variables that are used in K are
λ-variables used in M , therefore KT (K) |= ϕ iff K |= ϕ̂.

Finally a consequence of the transfer Theorem that we do not know how
to obtain from the results contained in[Ong06] is the decidability of the
synthesis problem that is given by Corollary 28.

In principle, it is possible to represent terms with an unbounded number
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of λ-variables by using the same trick for λ-binder as the one we have used
for the Y -binder. However, we conjecture that the transfer theorem does
not hold when we allow infinitely many λ-variables. Below we give a simple
argument under the hypothesis that the polynomial hierarchy is strict.

It is customary to represent booleans with the λ-terms of type 0→ 0→
0: true is represented by λxy.x and false by λxy.y. This permits the defini-
tion of the boolean connectives as terms too: and = λb1b2xy.b1(b2xy)y, or =
λb1b2xy.b1x(b2xy) and neg = λbxy.byx. One can also define propositional
quantifiers All = λf.and(f true)(f false) and Ex = λf.or(f true)(f false).
This allows us to represent in a direct manner every quantified boolean for-
mula θ as a simply typed finite closed term Mθ such that Mθ reduces to true
iff θ is true. Observe that Mθ has a linear size with respect to that of θ.
So if we assume that we are given two distinct terms Ntrue , Nfalse of type 0
we get MθNtrueNfalse reduces to Ntrue iff θ is true. Take an MSOL formula
ϕ that is true exactly in Graph(Ntrue). The transfer theorem without any
restriction on the number of λ-variables would give an MSOL formula ϕ̂
such that, for every quantified boolean formula θ: θ is true iff Mθ � ϕ̂. The
model-checking problem for the fixed formula ϕ̂ belongs to the polynomial
hierarchy: the level of the hierarchy is bounded from the above by the al-
ternation of quantifiers in ϕ̂. So the extension of the transfer theorem to
infinite number of λ-variables would imply that QBF satisfiability problem
is in the polynomial hierarchy.

Using finite terms to prove that the transfer theorem does not hold in
case an unbounded number of λ-variables is allowed cannot give a better
result than the example we have given with QBF since the evaluation in a
fixed finite model of finite terms that use only types from a finite set T can
easily be proved to be in Pspace. Thus, so as to get rid of the hypothesis
that the polynomial hierarchy is strict to prove that the transfer theorem
does not hold when an unbounded number of λ-variables is allowed, it seems
that we need to use an infinite term.

4 Proof of the transfer theorem

This section presents a proof of the transfer theorem. Before we give the
proof we need to introduce parity automata which recognize infinite trees
satisfying MSOL formulas. We then give an overview of the the proof. We
first prove the transfer theorem for terms in canonical form. We then remove
this assumption by observing that transformation of a term into a canonical
form is MSOL definable.

4.1 Parity autamata and MSOL on infinite binary trees

Recall that Σ is a fixed set of constants of type 0→ 0→ 0. For a closed term
M of type 0, these constants label nodes in BT (M). Since BT (M) is an
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infinite binary tree we can use standard non-deterministic parity automata
to define sets of Böhm trees. Such an automaton has the form

A = 〈Q,Σ, q0 ∈ Q, δ : Q× Σ→ P(Q2), rk : Q→ {1, . . . , d}〉 (1)

where Q is a finite set of states, q0 is the initial state, δ is the transition
function, and rk is a function assigning a rank (a number between 1 and d)
to every state.

In general, an infinite binary tree is a function t : {0, 1}∗ → Σ. A run
of A on t is a function r : {0, 1}∗ → Q such that r(ε) = q0 and for every
sequence w ∈ {0, 1}∗: (r(w0), r(w1)) ∈ δ(q, t(w)). The run is accepting if
for every infinite path in the tree, the sequence of states assigned to this
path satisfies the parity condition determined by rk ; this means that the
maximal rank of a state seen infinitely often should be even.

Formally, it may be the case that BT (M) contains also nodes labelled
with rk0. We will simply assume that every tree containing rk0 is rejected
by the automaton. This is frequently done in this context. Handling rk0

would not be difficult but would require to add one more case in all the
constructions. The other, more difficult, solution is to convert a term to a
term not generating rk0.

4.2 Structure of the proof

The proof of this theorem will use games. The core of the proof will work
with concrete termsM in canonical form. Since we have assumed that all our
constants are binary, BT (M) is a binary tree. There is a non-deterministic
parity automaton A on infinite binary trees that recognizes binary trees
that are models of ϕ. For a concrete canonical term M we will define a
game K(A,M). This game will be presented in terms of configurations of
the Krivine machine. Eve will win in K(A,M) iff BT (M) is accepted by A.
Then we will define a reduced game G(A,M) with the property that Eve
wins in the later game iff she wins in K(A,M). Finally, we will show that
G(A,M) is MSOL definable inside M (considered as the graph Graph(M)).
Since there is an MSOL formula γwin describing games where Eve wins, this
gives the desired formula ϕ̂. The last step is to remove the assumption that
M is in canonical forms. For this it is enough to observe that the translation
of M into a canonical form is an MSOL transduction. The schema of the
proof is presented in Figure 4.

4.3 Game K(A,M)

We now give the definition of RT (A,M), the runs of the automaton A on
the graph of configurations of the Krivine Machine computing BT (M). The
actual runs of A on BT (M) can easily be read off RT (A,M).
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Figure 4: Schema of the proof

Definition 15 For a given M ∈ CTerms(Σ, T , X) of type 0 , and a parity
automaton A we define the tree of runs RT (A,M) of A on the graph of
configurations of the execution of the Krivine Machine on M :

1. The root of the tree is labeled with q0 : (M, ∅,⊥)

2. A node labeled q : (a, ρ, S) has a successor (q0, q1) : (a, ρ, S) for every
(q0, q1) ∈ δ(q, a).

3. A node labeled (q0, q1) : (a, ρ, (v0, N0, ρ0)(v1, N1, ρ1)) has two succes-
sors q0 : (N0, ρ0,⊥) and q1 : (N1, ρ1,⊥).

4. A node labeled q : (λx.N, ρ, CS) has a unique successor labeled q :
(N, ρ[x 7→ C], S).

5. A node q : (Y x.N, ρ, S) has a unique successor q : (N, ρ, S).

6. A node v labeled q : (x, ρ, S), for x a recursive variable, has a unique
successor q : (term(x), ∅, S).

7. A node v labeled q : (NK, ρ, S) has a unique successor labeled q :
(N, ρ, (v,K, ρ)S). We say that here a v-closure is created.

8. A node v labeled q : (x, ρ, S), for x a λ-variable and ρ(x) = (v′, N, ρ′),
has a unique successor labeled q : (N, ρ′, S). We say that the node v
uses a v′-closure.

The definition is as expected but for the fact that in the rule for application
we store the current node in the closure. When we use the closure in the
variable rule or constant rule (rules 8 and 3), the stored node does not
influence the result. The stored node allows us to detect what is exactly the
closure that we are using. This will be important in the proof.

Notice also that the rules 2,3,4 rely on the typing properties of the Kriv-
ine machine ensured by the definition of its configurations (cf. page 13).
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Indeed, when the machine reaches a configuration of the form (a, ρ, S) then,
since we are working with tree signature, a is of type 0→ 0→ 0. In conse-
quence, the stack S consists of two closures of type 0. The environment ρ
plays no role in such a configuration as a is a constant. Also from typing in-
variant we get that, when the machine is in a configuration like (λx.N, ρ, S),
S cannot be the empty stack.

Definition 16 We use the tree RT (A,M) to define a game between two
players: Eve chooses a successor in nodes of the form q : (a, ρ, S), and
Adam in nodes (q0, q1) : (a, ρ, S). We set the parity rank of nodes labeled
q : (a, ρ, S) to rk(q), and the parity ranks of all the other nodes to 1. We
can use max parity condition to decide who wins an infinite play. Let us
call the resulting game K(A,M).

The following is a direct consequence of the definitions and Theorem 12.

Proposition 17 For every parity automatonA and concrete canonical term
M . Eve has a strategy from the root position in K(A,M) iff A accepts
BT (M).

The only interesting point to observe is that it is important to disallow
rank 0 in the definition of parity automaton since we assign rank 1 to all
“intermediate” positions. This is linked to our handling of infinite sequences
of reductions of the Krivine machine without reaching a head normal form.
Such a sequence results in a node labeled rk in a Böhm tree, hence the tree
should not be accepted by the automaton. Indeed, in the game K(A,M)
this will give an infinite sequence of states of rank 1.

Hence deciding whether BT (M) is accepted by A is reduced to deciding
who has a winning strategy from the root of K(A,M). We will introduce
a “smaller” game G(A,M), and show that the winner in the two games is
the same. While G(A,M) will still be infinite, it will be definable by MSOL
formula inside the term M itself.

4.4 Game G(A,M)

The game K(A,M) may have infinitely many positions because M is infinite,
but also because there may be infinitely many closures that are created.
We reduce this game to G(A,M) where we remove the second source of
infiniteness.

The idea of the reduction is to eliminate stacks and environments using
alternation. Consider situation in Figure 5. On the top left we have a
position v in the game K(A,M) where the application rule is used. This
means that the new closure (K, ρ) is put on the stack of the Krivine machine
(node v1). In some descendant v′ of v1 the closure may be used. This means
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Figure 5: Game K(A,M) on the left, and G(A,M) on the right.

that the machine gets to the variable x whose value is the closure in question.
Let us consider the simplest case when K is of type 0. Due to the typing
invariants on configurations of the Krivine machine, we know that the stack
is empty in v′. So the configuration in the successor v′1 of v′ is constructed
just from the closure. This observation allows to shortcut the path from v
to v′1. This is what we do in the game G(A,M).

The right part of Figure 5 represents the result of taking these shortcuts.
In a set R, that we call residual of the closure (K, ρ), we have collected all
states q′ which appear when the closure (K, ρ) is used: as in the node
v′1. For every such state we add directly a successor of v labeled with the
corresponding configuration. So the edge from v to v′1 in the right picture
simulates the path from v to v′1 in the left picture. Now the question is where
we get R from. We actually just guess it and check if it is big enough. This
is the task of the leftmost transition in the right picture. The gray triangle
is the same as in the original game. But this time instead of a closure we
have put R on the stack. When we get to v′ we just check that the state in
v′ is in R. This check guarantees that we have put all uses of the closure
into R.

The successive level of complication comes from the fact that K(A,M)
is a parity game and not a reachability game. This complication is not just
cosmetic: the same problem for reachability games can be solved using much
lighter methods. In order to deal with parity conditions we need not only to
remember the state in which the closure is used, but also the biggest rank
on the path from creation of the closure to its use. This is symbolized by r′

in the left part of the figure. We use the same r′ as the rank of the edge in
the reduced game.

The final level of complication comes from the fact that till now we have
assumed that K is of type 0, but in general we need to deal with terms K
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of types of any order. The difference is that if K is not of type 0 then the
configuration in v′ on the left will be of the form q′ : (x, ρ′, S) for some stack
S whose type is determined by the type of x, that is the same as the type
of K. Observe that the typing invariant of Krivine machine tells us that
the orders of types of closures on the stack are always strictly smaller than
that of K. So by induction on types we can assume that S is composed of
residuals and not of closures. Since there are finitely many residuals, the
residual for K will be now a function from sequences of residuals representing
possible stacks S to a set of states with ranks as in the case when K had
type 0.

After these explanations we will proceed to define residuals, the lifting
operation on residuals, and finally the game G(A,M). The lifting operation
on residuals will permit us to deal with all the book-keeping required by the
parity condition in an elegant way.

Definition 18 (Residuals) Recall that Q is the set of states of A and d
is the maximal value of the rank function of A. Let [d] stand for the set
{1, . . . , d}. For every type τ = τ1 → · · · → τk → 0, the set of residuals Dτ is
the set of functions Dτ1 → · · · → Dτk → P(Q× [d]).

For example, D0 is P(Q× [d]) and D0→0 is P(Q × [d]) → P(Q× [d]). The
meaning of residuals will become clearer when we will define the game.

A position of the game G(A,M) will be of one of the forms:

q : (N, ρ, S), or (q0, q1) : (N, ρ, S), or (q,R) : (N, ρ, S)

where q, q0, q1 are states of A, N is a subterm of M ; ρ is a function assigning
a residual to every λ-variable that has a free occurrence in N , and S is a
stack of residuals. Of course the types of residuals will agree with the types
of λ-variables/arguments they are assigned to. Notice that we use the same
letter ρ to denote an environment as well as an assignment of residuals.
Similarly for S. It will be always clear from the context what object is
denoted by these letters.

We need one more operation before defining the game. Indeed, when a
set of residuals is guessed in G(A,M), it is, as mentioned above, the role
of the left transition on the right of figure 5 to check that the guess covers
all the possibilities. In the particular case where the term K is of type
0, checking that the residual is correct makes it necessary to verify that
the biggest ranks guessed on the paths from the node where the closure is
created to the nodes where it is used are correct. The role of the lifting
operation we introduce here is to perform this verification. Of course this
operation is defined for residuals of any orders.

Definition 19 A lifting of a residual R : Dτ1 → · · · → Dτk → D0 by a rank
r is a residual R �r of the same type as R satisfying for every sequence of
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arguments S:

R�r (S) = {(q1, r1) ∈ R(S) : r1 > r}∪{(q1, r2) : (q1, r1) ∈ R(S), r2 ≤ r1 = r}

Recall that D0 = P(Q×[d]) so what R�r does is to modify the set of pairs
R(S) which is the value of R on the sequence of residuals S of appropriate
type. The operation leaves unchanged all pairs (q1, r1) with r1 > r. For
every pair (q1, r1) with r1 = r it adds pairs (q1, r2) for all r2 ≤ r. All pairs
(q1, r1) of R(S) with r1 < r do not contribute to the result.

Example Let’s take the residual R = {(q1, 1); (q2, 2); (q3, 3)} of type 0.
We have that

R�1={(q1, 0); (q1, 1); (q2, 2); (q3, 3)},
R�2={(q2, 0); (q2, 1); (q2, 2); (q3, 3)},
R�3={(q3, 0); (q3, 1); (q3, 2); (q3, 3)}, and

R�4=∅.

If we take a residual R of type 0→ 0 that maps {(q1, 1)} to {(q2, 2); (q3, 3)}
and {(q2, 1)} to {(q1, 1); (q3, 1)}, and all other residuals to ∅ then R�2 maps
{(q1, 1)} to {(q2, 0); (q2, 1); (q2, 2); (q3, 3)} and all other residuals to ∅.

Lemma 20 For every residual R and ranks r1, r2: (R�r1)�r2= R�max(r1,r2).

If ρ is an environment then ρ�r is an environment such that for every x:
(ρ�r)(x) = ρ(x)�r.

We have all ingredients to define the transitions of the game G(A,M).
Most of the rules are just reformulation of the rules in K(A,M):

q : (λx.N, ρ,R · S)→ q : (N, ρ[x 7→ R], S)

q : (a, ρ,R0R1)→ (q0, q1) : (a, ρ,R0R1) for (q0, q1) ∈ δ(q, a)

q : (Y x.N, ρ, S)→ q : (N, ρ, S)

q : (x, ρ, S)→ q : (term(x), ρ, S) x a recursion variable

Figure 6: Dealing with application in G(A,M).
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We now proceed to the rule for application (cf. Figure 6). Consider
q : (NK, ρ, S) with K of type τ = τ1 → · · · → τl → 0. We have a transition

q : (NK, ρ, S)→ (q,R) : (NK, ρ, S)

for every residual R : Dτ1 → · · · → Dτl → D0. From this position we have
transitions

(q,R) : (NK, ρ, S)→ q : (N, ρ,R�rk(q) ·S)

(q,R) : (NK, ρ, S)→ q′ : (K, ρ�r′ , R1 · · ·Rl) for every R1 ∈ Dτ1 ,. . . ,Rl ∈ Dτl

and (q′, r′) ∈ R�rk(q) (R1, . . . , Rl).

In the last line R �rk(q) is needed to “normalize” the residual, so that it
satisfies the invariant described below.

Since we are defining a game, we need to say who makes a choice in which
vertices. Eve chooses a successor from vertices of the form q : (NK, ρ, S),
and q : (a, ρ,R0R1). It means that she can choose a residual, and a transition
of the automaton. This leaves for Adam the choices in nodes of the form
(q,R) : (NK, ρ, S). So he decides whether to accept (by choosing a transition
of the first type) or to contest residuals proposed by Eve.

Observe that we do not have a rule for nodes with a term being a λ-
variable. Also positions of the form (q0, q1) : (a, ρ,R0R1) are terminal. This
means that we need to say who is the winner in nodes of these two forms.

For the case of a variable, Eve wins in a position

q : (x, ρ, S) with ρ(x) = Rx and S = R1 · · ·Rk.

if (q, rk(q)) ∈ Rx(R1, . . . , Rk).
For the case of a constant, Eve wins in a position

(q0, q1) : (a, ρ,R0R1)

if (q0, rk(q0)) ∈ R0 �rk(q0) and (q1, rk(q1)) ∈ R1 �rk(q1). Observe that in this
case both R0 and R1 are necessarily residuals of type 0.

Finally, we need to define ranks. It will be much simpler to define ranks
on transitions instead of nodes. All the transitions will have rank 1 but for
transitions of the form (q,R) : (NK, ρ, S) → q′ : (K, ρ �r′ , R1 · · ·Rk) that
have rank r′.

A play is winning for Eve iff the sequence of ranks on transitions satisfies
the parity condition: the maximal rank appearing infinitely often is even.

4.5 Equivalence of G(A,M) and K(A,M)

We are now going to prove the central property relating G(A,M) and
K(A,M).
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Proposition 21 For every parity automatonA and concrete canonical term
M . Eve wins in K(A,M) iff Eve wins in G(A,M).

The proof of this lemma proceeds as follows. For the direction from
left to right we take a winning strategy for Eve in K(A,M) and define
residuals for every closure with respect to this strategy. Then we show how
Eve is winning in G(A,M) using these residuals. The winning strategy in
G(A,M) will simulate the one in K(A,M). For the other direction we will
calculate residuals with respect to Adam’s winning strategy in K(A,M) and
use them to define Adam’s winning strategy in G(A,M). As parity games
are determined, we obtain Proposition 21.

4.5.1 Residuals in K(A,M)

We here introduce the key notion of the proof, the notion of residuals of
nodes. Given a subtree T of K(A,M), i.e. a tree obtained from K(A,M) by
pruning some of its subtrees, we calculate the residuals RT (v) and resT (v, v′)
for some nodes and pair of nodes of T . In particular, T may be taken as
being a strategy of Eve or a strategy of Adam. When T is clear from the
context we will simply write R(v) and res(v, v′).

Recall that a node v in K(A,M) is an application node when its label is of
the form q : (NK, ρ, S). We will assign a residual R(v) to every application
node v. Thanks to typing, this can be done by induction on the order of
type. We also define a variation of this notion: a residual R(v) seen from
a node v′, denoted res(v, v′). The two notions are the main technical tools
used in the proof of the theorem.

Before giving a formal definition we will describe the assignment of resid-
uals to nodes in concrete terms. We will need one simple abbreviation. If
v is an ancestor of v′ in T then we write max(v, v′) for the maximal rank
appearing on the path between v and v′, including both ends.

Consider an application node v in T . It means that v has a label
of the form q : (NK, ρ, S), and its unique successor has the label q :
(N, ρ, (v,K, ρ)S). That is the closure (v,K, ρ) is created in v. We will look
at all the places where this closure is used and summarize the information
about them in R(v). We will do this by induction on the type of K.

First, suppose that the closure, or equivalently the term K, is of type 0.
The residual R(v) is a subset of Q× [d]. We have two cases

• We put (q′,max(v, v′)) ∈ R(v) when there is v′ in T labeled q′ :
(x, ρ′,⊥) such that ρ′(x) = (v,K, ρ);

• We put (qi,max(v, v′′)) ∈ R(v) when there is v′′ in T labelled qi :
(K, ρ,⊥) having a parent labelled (q0, q1) : (a, ρ′, C0C1) with Ci =
(v,K, ρ); for i = 0 or i = 1.
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For the induction step, suppose that K is of type τ1 → · · · → τk → 0 and
that we have already calculated residuals for all closures of types τ1, . . . , τk.
Suppose that we have a closure (v,K, ρ) created at a node v. This time
R(v) : Dτ1 → · · · → Dτk → P(Q × [d]). Consider a node v′ using the
closure. Its label has the form q′ : (x, ρ′, S′) for some x, ρ′ and S′ such that
ρ′(x) = (v,K, ρ). The stack S′ has the form (v1, N1, ρ1) . . . (vk, Nk, ρk) with
Ni of type τi. We put

(q′,max(v, v′)) ∈ R(v)(R(v1)�max(v1,v′), . . . , R(vk)�max(vk,v′)) .

We now give a formal definition of R(v). By structural induction on
types it is easy to see that such an assignment of residuals exists and is
unique for T .

Definition 22 (R(v) and res(v, v1)) Given T a subtree of K(A,M), we
define a residual R(v) for every application node v of T .

For more clarity we will write res(v, v1) for R(v)�max(v,v1). For a closure
(v,K, ρ) we define res((v,K, ρ), v′) = res(v, v′). We then extend this opera-
tion to stacks: res(S, v′) is S where res(·, v′) is applied to every element of
the stack.

Let v be a node of T labelled by q : (NK, ρ, S) with K of type τ1 →
· · · → τk → 0. The residual R(v) is a function Dτ1 → · · · → Dτk → D0 such

that for every sequence of residuals ~R of appropriate types the set R(v)(~R)
contains

• (q′,max(v, v′)) for every node v′ of T with the label of the form
q′ : (x, ρ′, S′) for some x, ρ′, S′ such that ρ′(x) = (v,K, ρ), and
res(S′, v′) = ~R.

• (qi,max(v, v′)), for every node v′ labelled qi : (K, ρ,⊥) having a parent
labelled (q0, q1) : (a, ρ′, C0C1) with Ci = (v,K, ρ); for i = 0 or i = 1.
Notice that this case applies only if K is of type 0.

4.5.2 Transferring Eve’s strategy in K(A,M) to G(A,M)

Let’s assume that Eve has a winning strategy σ on K(A,M) defining the
subtree Kσ of K(A,M). Let’s also assume that we have computed the
residuals for Kσ as in Definition 22. We will use the residuals to define a
winning strategy for Eve in G(A,M).

The invariant Will use positions in the game K(A,M) and the strategy
σ as hints. The strategy in G(A,M) will take a pair of positions (v1, v2)
with v1 in G(A,M) and a v2 in K(A,M). It will then give a new pair of
positions (v′1, v

′
2) such that v′1 is a successor v1, and v′2 is reachable from
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v2 using the strategy σ. Moreover, all visited pairs (v1, v2) will satisfy the
following invariant:

• v1 is labeled by q : (N, ρ1, S1) and v2 is labeled by q : (N, ρ2, S2), where
ρ1 = res(ρ2, v2) and S1 = res(S2, v2),

• v1 is labeled by (q0, q1) : (a, ρ1, S1) and v2 is labeled by (q0, q1) :
(a, ρ2, S2) with ρ1 = res(ρ2, v2) and S1 = res(S2, v2).

The strategy The initial positions in both games have the same label
q0 : (M, ∅,⊥), so the invariant is satisfied. In order to define the strategy
we will consider one by one the rules defining the transitions in G(A,M).

The two cases where Eve needs to decide which successor to chose are
the nodes with a constant or with an application. A node with a constant
is of the form q : (a, ρ1, R0R1). Eve should then simply take the same
transition of the automaton as taken from v2. So it advances to a node
labelled (q0, q1) : (a, ρ1, R0R1). It is clear that the invariant is satisfied as
the environment and the stack do not change. This implies moreover that
no matter what Adam’s next move is, the new position also satisfies the
invariant.

The strategy and its analysis in the case of application node is more
complicated. Suppose that the term in the label of v1 is an application,
say q : (NK, ρ1, S1). By our invariant we have a position v2 labeled by
q : (NK, ρ2, S2), where ρ1 = res(ρ2, v2) and S1 = res(S2, v2). To satisfy
the invariant, the strategy in G(A,M) needs to choose R(v2), that is the
residual assigned to v2. This means that from v1 the play proceeds to the
node v′1 labeled (q,R(v2)) : (NK, ρ1, S1). From this node Adam can choose
either

q :(N, ρ1, (R(v2)�rk(q)) · S1), or (2)

q′ :(K, ρ1 �r′ , R1 . . . Rl) where (q′, r′) ∈ R(v2)�rk(q) (R1, . . . , Rl). (3)

Suppose Adam chooses v′′1 whose label is as in (2). By definitionR(v2)�rk(q)=
res(v2, v2). Hence the stack (R(v2) �rk(q)) · S1 is just res((v2,K, ρ2)S2, v2).
The unique successor v′2 of v2 is labeled by q : (N, ρ2, (v2,K, ρ2)S2). So the
pair (v′′1 , v

′
2) satisfies the invariant.

Let us now examine the case where Adam chooses for v′′1 a node of
the form (3) for some q′, r′ and R1 . . . Rl (see Figure 7). Looking at the
definition of R(v2), Definition 22, the first possible case is that in Kσ the
node v2 has a descendant v′2 labeled q′ : (x, ρ′2, S

′
2) with ρ′2(x) = (v2,K, ρ2),

res(S′2, v
′
2) = R1 . . . Rl and moreover r′ = max(v2, v

′
2). The successor v′′2 of

v′2 is labeled by q′ : (K, ρ2, S
′
2). We can take it as a companion for v′′1 since

ρ1 �r′= res(ρ2, v2) �max(v2,v′′2 )= res(ρ2, v
′′
2) by Lemma 20. Hence the pair

(v′′1 , v
′′
2) satisfies the invariant.
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v1

v′1

v′′1

q : (NK, ρ1, S1)

(q, R(v2)) : (NK, ρ1, S1)

q′ : (K, ρ1 �r′ , R1 . . . Rl)
r′ = max(v2, v

′
2)

v2

v′2

v′′2

q : (NK, ρ2, S2)

q : (N, ρ2, (v2, K, ρ2)S2)

q′ : (x, ρ′2, S
′
2) where ρ′2(x) = (v2, K, ρ2)

and res(S′
2, v

′
2) = R1 . . . Rl

q′ : (K, ρ2, S
′
2)

Figure 7: Adam chooses a node of the form (3)

The second possibility for (q′, r′) ∈ R(v2) � rk(q) is when K has type
0, and there is a node v′2 labelled qi : (K, ρ,⊥) having a parent labelled
(q0, q1) : (a, ρ′, C0C1) with Ci = (v,K, ρ); for i = 0 or i = 1. By definition
of R(v2) we have that r′ = max(v2, v

′
2). We can take v′2 as a companion

of v′′1 since ρ1 �r′= res(ρ2, v2) �max(v2,v′2)= res(ρ2, v
′
2) by the invariant and

Lemma 20. Hence the pair (v′′1 , v
′
2) satisfies the invariant.

The strategy is winning We need to show that the strategy defined
above is winning. Consider a sequence of nodes (v1

1, v
1
2), (v2

1, v
2
2), . . . consis-

tent with the strategy. Suppose that this sequence is infinite. By construc-
tion we have that v1

2, v
2
2, . . . is a path in Kσ, hence a play winning for Eve.

We have defined the strategy in such a way that a rank of a transition from
vi1 to vi+1

1 is the same as the maximal rank of a node on the path between
vi2 and vi+1

2 . Hence v1
1, v

2
1, . . . is winning for Eve too.

It remains to check what happens when a maximal play is finite. This
means that the path ends in a pair (v1, v2) where v1 is a variable node or a
constant node.

A variable node is labeled by q : (x, ρ1, S1). To show that Eve wins here
we need to prove that

(q, rk(q)) ∈ Rx(S1) where Rx = ρ1(x).

By the invariant we have that the companion node v2 is labeled by q :
(x, ρ2, S2) and ρ1 = res(ρ2, v2), S1 = res(S2, v2). Suppose that ρ2(x) =
(v,N, ρ). We have Rx = R(v)�max(v,v2), since ρ1 = res(ρ2, v2). By definition
of R(v) we get (q,max(v, v2)) ∈ R(v)(res(S2, v2)). Then from the defini-
tion of the �max(v,v2) operation: (q,max(v, v2)) ∈ R(v)(res(S2, v2))�max(v,v2).
Which implies that (q, rk(q)) ∈ R(v)(res(S2, v2)) �max(v,v2) since rk(q) ≤
max(v, v2). This is the required statement (q, rk(q)) ∈ Rx(S1).

A constant node is labeled by (q0, q1) : (a, ρ1, R0R1). We need to show
that (qi, rk(qi)) ∈ Ri �rk(qi), for i = 0, 1. Let i = 0, the argument is the same
for i = 1. By the invariant we have that the companion node v2 is labeled
by (q0, q1) : (a, ρ2, C0C1). Suppose C0 is (v,N, ρ). So v2 has a successor
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v′2 labelled with q0 : (N, ρ,⊥). We have that R0 = R(v) �max(v,v2), since
S1 = res(S2, v2) by the invariant. By definition of R(v) we get (q0,m) ∈
R(v); where m = max(v, v′2). From the definition �m operation: (q0,m) ∈
R(v) �m. Which implies (q0, rk(q0)) ∈ R(v) �m as rk(q0) ≤ m. Since m =
max(max(v, v2), rk(q0)) we get R(v)�m= (R(v)�max(v,v2))�rk(q0)= R0 �rk(q0),
and we are done.

4.5.3 Transferring Adam’s strategy from K(A,M) to G(A,M)

We will show how to get a winning strategy for Adam in G(A,M) form
his winning strategy in K(A,M). Once again we will use residuals. Let us
fix a winning strategy θ of Adam in K(A,M), and consider the tree Kθ of
plays respecting this strategy. This is a subtree of K(A,M). Consider the
assignment of residuals to application nodes in Kθ as in Definition 22. We
will define a strategy in G(A,M) that will preserve the invariant described
below.

The invariant In order to formulate the invariant for the strategy we
introduce complementarity predicate Comp(R1, R2) between a pair of resid-
uals:

• For R1, R2 ∈ D0 we put Comp(R1, R2) if R1 ∩R2 = ∅.

• ForR1, R2 ∈ Dτ where τ = τ1 → · · · → τk → 0 we put Comp(R1, R2) if
for all sequences (R1,1, . . . , R1,k), (R2,1, . . . , R2,k) ∈ Dτ1×· · ·×Dτk such
that Comp(R1,i, R2,i) for all i = 1, . . . , k we get R1(R1,1, . . . , R1,k) ∩
R2(R2,1, . . . , R2,k) = ∅.

Remark: Comp predicate is a logical relation (see [AC98]), but we have
prefer to formulate the definition in a form that will be more useful for
proofs.

For two closures (v,N, ρ) and (v′, N, ρ′) we will say that the predicate
Comp((v,N, ρ), (v′, N, ρ′)) holds if Comp(R(v), R(v′)) is true. For two envi-
ronments ρ, ρ′ we write Comp(ρ, ρ′) if the two environments have the same
domain and for every x, the predicate Comp(ρ(x), ρ′(x)) holds. Finally,
Comp(S, S′) holds if the two sequences are of the same length and the pred-
icate holds for every coordinate.

It is important to observe that Comp behaves well with respect to �r
operation

Lemma 23 If Comp(R1, R2) then also Comp(R1 �r, R2 �r) for every rank r.

Proof
Take two sequences S1 and S2 of the correct type with respect to R1 and
R2 and such that Comp(S1, S2). Since Comp(R1, R2), we have R1(S1) ∩
R2(S2) = ∅. Let’s suppose that (q1, r1) is in R1 �r (S1), then either r1 > r
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and (q1, r1) is in R1(S1) so that (q1, r1) is neither in R2(S2) nor in R2 �r (S2);
or r1 ≤ r and (q1, r) is in R1(S1) so that (q1, r) is not in R2(S2) and (q1, r1)
is not in R2 �r (S2). Similarly we get that whenever (q2, r2) is in R2 �r (S2)
it is not in R1 �r (S1). Therefore R1 �r (S1) ∩ R2 �r (S2) = ∅. Since S1, S2

were arbitrary, we get Comp(R1 �r, R2 �r). �

As in the case for Eve, the strategy for Adam will take a pair of vertices
(v1, v2) from G(A,M) and K(A,M), respectively. It will then consult the
strategy θ for Adam in K(A,M) and calculate a new pair (v′1, v

′
2). All the

pairs will satisfy the invariant:

v1 labeled by q : (N, ρ1, S1) and v2 labeled by q : (N, ρ2, S2);
where Comp(ρ1, res(ρ2, v2)) and Comp(S1, res(S2, v2));

The strategy We define the strategy by considering one by one the rules
for constructing the tree K(A,M). The only case where Adam makes a
choice is the application rule.

A node labeled q : (NK, ρ1, S1) is a node of Eve and it has successors
labeled (q,R) : (NK, ρ1, S1) for every residual R of appropriate type. Sup-
pose Eve chooses some R and in consequence such a node v′1. Then Adam
has a choice between the children of v′1 that have labels of the form:

q :(N, ρ1, R�rk(q) ·S1) (4)

q′ :(K, ρ1 �r′ , R1 · · ·Rl) for (q′, r′) ∈ R�rk(q) (R1, . . . , Rl) (5)

At the same time the node v2 of K(A,M) is an application node so it has
assigned residual R(v2). We have two cases.

Suppose Comp(R �rk(q), R(v2)) holds. In this case Adam chooses for v′′1
the node labeled q : (N, ρ1, R �rk(q) ·S1). This works since the successor v′2
of v2 is labeled by q : (N, ρ2, (v2,K, ρ)S2); hence the pair (v′′1 , v

′
2) satisfies

the invariant.
The other case is when Comp(R�rk(q), R(v2)) does not hold. This means

that there are (R1,1, . . . , R1,l) and (R2,1, . . . , R2,l) such that Comp(R1,i, R2,i)
for all i = 1, . . . , l and R �rk(q) (R1,1, . . . , R1,l) ∩ R(v2)(R2,1, . . . , R2,l) 6= ∅.
Let (q′, r′) be the element from the intersection. Examining the definition of
R(v2), Definition 22, there are two reasons why (q′, r′) ∈ R(v2)(R2,1, . . . , R2,l).

The first case (see figure 8) is when there is in Kθ a node v′2 labeled by
q′ : (x, ρ′2, S

′
2) such that ρ′2(x) = (v2,K, ρ2), res(S′2, v

′
2) = (R2,1, . . . , R2,l)

and r′ = max(v2, v
′
2). In that case, we choose for v′′1 the node labeled

q′ : (K, ρ1 �r′ , R1,1 · · ·R1,l). As its companion node we choose the successor
v′′2 of v′2 labelled by q′ : (K, ρ2, S

′
2). So the new position becomes (v′′1 , v

′′
2).

We need to show that Comp(ρ1 �r′ , res(ρ2, v
′′
2)) holds. For this take an

arbitrary variable y for which ρ1(y) is defined. Since Comp(ρ1, res(ρ2, v2))
we have Comp(ρ1(y), res(ρ2(y), v2)). As r′ = max(v2, v

′
2) = max(v2, v

′′
2) we
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have res(ρ2(y), v′′2) = res(ρ2(y), v2) �r′ , and then by Lemma 23 we get the
required Comp(ρ1(y) �r′ , res(ρ2(y), v2) �r′). And of course, by hypothesis
we have Comp(R1,i, R2,i) for all i = 1, . . . , l so that the new configuration
satisfies the invariant.

v1

v′1

v′′1

q : (NK, ρ1, S1)

(q, R�rk(q)) : (NK, ρ1, S1)

q′ : (K, ρ1 �r′ ,⊥)
r′ = max(v2, v

′
2)

v2

v′2

v′′2

q : (NK, ρ2, S2)

q : (N, ρ2, (v2, K, ρ2)S2)

q′ : (x, ρ′2, S
′
2) where ρ′2(x) = (v2, K, ρ2)

res(S′
2, v

′
2) = R2,1 . . . R2,l,

and Comp(R1,i, R2,i)
q′ : (K, ρ2, S

′
2)

Figure 8: First case when (q′, r′) ∈ R �rk(q) (R1,1, . . . , R1,l) ∩
R(v2)(R2,1, . . . , R2,l)

The second case (see Figure 9) is when K has type 0 and there is in
Kθ a node v′2 labelled qi : (K, ρ2,⊥), with qi = q′, having a parent labelled
(q0, q1) : (a, ρ′, C0C1) with Ci = (v,K, ρ2); for i = 0 or i = 1 (Figure 9
represents the case where i = 0); and r′ = max(v2, v

′
2). For v′′1 take the

node labelled q′ : (K, ρ1 �r′ ,⊥), and for its companion take the node v′2. We
need to show that Comp(ρ1 �r′ , res(ρ2, v

′
2)) holds. For this take arbitrary

variable y for which ρ1(y) is defined. Since Comp(ρ1, res(ρ2, v2)) we have
Comp(ρ1(y), res(ρ2(y), v2)). As r′ = max(v2, v

′
2) we have res(ρ2(y), v′2) =

res(ρ2(y), v2)�r′ , and then by Lemma 23 we get the required Comp(ρ1(y)�r′
, res(ρ2(y), v2)�r′).

v1

v′1

v′′1

q : (aK, ρ1, S1)

(q, R�rk(q)) : (aK, ρ1, S1)

q′ : (K, ρ1 �r′ ,⊥)
r′ = max(v2, v

′
2)

v2

v′2

q : (NK, ρ2, S2)

q : (N, ρ2, (v2, K, ρ2)S2)

(q0, q1) : (a, ρ2, (v2, K, ρ2)C1)

q′ : (K, ρ2,⊥) with q′ = q0

Figure 9: Second case when (q′, r′) ∈ R�r′ ∩R(v2) (with i = 0)

The strategy is winning As in the case of the strategy for Eve, it is
easy to show that every infinite play is winning. It remains to check what
happens if v1 is a variable node or a constant node.

A variable node is labeled by q : (x, ρ1, S1). To show that Adam wins
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here we need to prove that

(q, rk(q)) 6∈ Rx(S1) where Rx = ρ1(x).

By the invariant, the companion node v2 is labeled by q : (x, ρ2, S2) and
satisfying

Comp(Rx, res(ρ2, v2)(x)), Comp(S1, res(S2, v2)) .

Suppose ρ2(x) = (v,N, ρ). Then (q,max(v, v2)) ∈ R(v)(res(S2, v2)) by the
definition of R(v) (Definition 22). Hence we also have

(q,max(v, v2)) ∈ R(v)(res(S2, v2))�max(v,v2) ,

and in consequence

(q, rk(q)) ∈ R(v)(res(S2, v2))�max(v,v2) .

As R(v)�max(v,v2)= res(ρ2, v2)(x) we get Comp(Rx, R(v)�max(v,v2) (x)), from
the invariant. As Comp(S1, res(S2, v2)) we can obtain (q, rk(q)) 6∈ Rx(S1)
by the definition of Comp.

A constant node is labelled by (q0, q1) : (a, ρ1, R0R1). To show that
Adam wins here we need to prove that (qi, rk(qi)) 6∈ Ri �rk(qi) for i = 0
or i = 1. By the invariant, the companion node v2 is labeled by (q0, q1) :
(a, ρ2, C0C1) and satisfying Comp(Ri, res(Ci, v2)) for i = 0, 1. The node v2

must have a successor in Kθ. Let it be q0 : (N, ρ,⊥) where C0 = (v,N, ρ).
We will show that (q0, rk(q0)) 6∈ R0 �rk(q0). We have Comp(R0, res(C0, v2))
so also Comp(R0 �rk(q0), res(C0, v2)�rk(q0)) by Lemma 23. But then we have
res(C0, v2)�rk(q0) is (R(v)�max(v,v2))�rk(q0). Letm = max((max(v, v2), rk(q0)).
By definition of R(v), Definition 22, (q0,m) ∈ R(v). Then (q0,m) ∈
R(v) �max(v,v2) and (q0,m) ∈ (R(v) �max(v,v2)) �rk(q0) so that (q0, rk(q0)) ∈
(R(v) �max(v,v2)) �rk(q0). By the definition of Comp predicate (q0, rk(q0)) 6∈
R0 �rk(q0).

4.6 Transductions

In this subsection we will finish the proof of the theorem. We know that for
every term M in concrete canonical form: BT (M) � ϕ iff Eve has a winning
strategy in the game K(A,M). We have also shown that the later condition
is equivalent to Eve having a winning strategy in G(A,M). To conclude we
will construct a formula ϕ̂ such that M � ϕ̂ iff Eve has a winning strategy
in G(A,M). We will also show how to get rid of the assumption that M is
in a canonical form.

In order to construct the formula ϕ̂ we will examine the definition of the
game and use MSOL transductions. Positions of G(A,M) (cf. Section 4.4)
are subterms of M together with some information of a bounded size: a
state of A, an environment ρ assigning residuals to λ-variables, and a stack
of residuals. We make it precise in the following lemma.
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Lemma 24 There is a number, call it maxpos, depending only on Σ, T
and X such that for every subterm N of a term M ∈ Terms(Σ, T ,X ), the
number of positions in G(A,M) of the form q : (N, ρ, S) is bounded by
maxpos.

Proof
First observe that the number of residuals of a given type is finite. A residual
of type 0 is a subset of Q × [d] where Q is the set of states of A and d is
the maximal value of the rank function of A. A residual of type α → β is
a function from residuals of type α to residuals of type β. Recall that ρ is
a function assigning residuals to free λ-variables of N . So the number of
possible ρ is bounded since λ-variables come from a fixed finite set X , and
the type of the residual assigned to a λ-variable is determined by the type of
the λ-variable. For the stack S, we know that the type of N determines the
type of S in the sense that it determines the length of the sequence S and
the type of each element of the sequence. Since the type of N belongs to
the finite set of types T we have that the number of possible stacks depends
on T and not on N . �

We will argue that it is possible to define G(A,M) inside Graph(M) by
means of formulas of MSOL. In other words, that for a fixed A, the mapping
from M to G(A,M) is a monadic second-order transduction. Having done
this, the desired formula ϕ̂ will come from the inverse image determined by
this transduction of the formula defining games where Eve has a winning
strategy.

First observe that the game G(A,M) can be represented with a structure
over a signature depending only on A. To represent G(A,M), we need a
predicate determining the transitions in the game, a predicate distinguishing
the positions for Eve, and a predicate for every rank in order to encode the
parity condition. So the signature depends only on ranks and these come
from A. We will write G(A,M) � ψ to mean that ψ holds in the structure
representing G(A,M). Recall that for every fixed set of ranks, there is an
MSOL formula defining the set of parity games where Eve has a winning
strategy. Let γwin be such a formula for the set of ranks determined by A.
We have:

G(A,M) � γwin iff Eve wins in G(A,M) (6)

In order to define G(A,M) inside Graph(M), we will need a transduction
that duplicates a given structure a certain number of times. Take a natu-
ral number k and let [k] stand for {1, . . . , k}. Consider a structure M =
〈V,E1, E2, P1, . . . , Pl〉, in our case it will be a graph of a term. A k-fold dupli-
cation ofM is a structureM×[k] = 〈V×[k], E1, E2, eq , P1, . . . , Pl, C1, . . . , Ck〉
whose elements are pairs (v, i) ∈ V × [k]; we think of (v, i) as of v in the i-th
copy. The relations E1, E2 are as inM, that is they hold between elements
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of the same copy: E1((v, i), (v′, j)) iff E1(v, v′) and i = j. The eq predi-
cate says that two elements are copies of the same element: eq((v, i), (v′, j))
iff v = v′. Predicates P1, . . . , Pl are as in M: Pi(v, j) if Pi(v). Finally,
predicate Ci holds for all elements of copy i: Ci(v, j) iff i = j.

It is well-known [Cou94] that for every k and MSOL formula ψ there is
a formula ψ/[k] such that for every structure M:

M× [k] � ψ iff M � ψ/[k] (7)

Let M be a term and maxpos the constant from the Lemma 24. We will
show how to define G(A,M) in Graph(M) × [maxpos]. A configuration of
G(A,M) has a form q : (N, ρ, S). We will think of it as consisting of a term
N and a context q : (·, ρ, S). To every possible context q : (·, ρ, S) we can
associate a number from [maxpos]. So a node (v, i) in Graph(M)×[maxpos] is
a configuration q : (Nv, ρ, S) where Nv is the term rooted in v and q : (·, ρ, S)
is the context number i. We write Cq:(·,ρ,S) for Ci where i is the number of
the context. With this convention one can directly express the transitions
of the game G(A,M) with MSOL formulas over M × [k]. We give two
examples. For all N the transitions :

q : (λx.N, ρ,R · S)→ q : (N, ρ[x 7→ R], S)

are defined by

nextλ(z, z′) ≡ Cq:(·,ρ,R·S)(z) ∧ Pλx(z)∧
∃z′′. E1(z, z′′) ∧ eq(z′′, z′) ∧ Cq(·,ρ[x 7→R],S)(z

′)

The transitions on Y -variables are defined by

next�(z, z
′) ≡ Cq:(·,ρ,S)(z) ∧ P�(z) ∧ ∃z′′.E1(z, z′′) ∧ eq(z′′, z′) ∧ Cq:(·,∅,S)

Observe that the formulas depend onA but not on M . These formulas define
G(A,M) inside Graph(M)× [maxpos]. We obtain that for every formula ψ
there is a formula ψint such that for all M :

G(A,M) � ψ iff Graph(M)× [k] � ψint. (8)

We now have all ingredients to prove the following lemma.

Lemma 25 For a fixed A, T and X . There is a formula ϕ̂A such that for
every term M ∈ CTerms(Σ, T ,X )

Even wins in G(A,M) iff Graph(M) � ϕ̂A

Indeed it is enough to use the properties from (6), (7), (8). The formula ϕA
from the lemma is (γintwin)/[maxpos].
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Recall that the automaton A was supposed to be equivalent over trees to
our initial formula ϕ. If M is a concrete canonical term then Proposition 17
tells us that BT (M) � ϕ iff Eve wins in K(A,M). By Proposition 21, the
later condition is equivalent to Eve winning in G(A,M). The lemma above
says that this is equivalent to Graph(M) � ϕ̂A. Thus we can take ϕ̂A as our
formula ϕ̂ in Theorem 13. Observe that this formula does not depend on
M .

The last step in the proof is to remove the hypothesis of M being concrete
canonical. The translation presented in Section 2.3 is actually an MSOL
transduction. So we have that for every formula ψ there is a formula ψC

such that for every term M :

Can(M) � ψ iff M � ψC

Putting this together we get that for if we start with M not in canonical
form we should take ϕ̂C .

5 Consequences of the transfer theorem for eval-
uation

The objective of this short section is to present several corollaries of the
transfer theorem. The first consequence is the decidability of the MSOL
theory of BT (M) for every finite term M of λY -calculus. This gives another
proof of the result of Ong [Ong06], since for every higher-order recursive
scheme F there is a finite term M such that BT (M) is the tree generated
by F (see[SW12a]).

Corollary 26 For every finite term M of λY -calculus, the MSOL theory
of BT (M) is decidable.

The part of the strength of the transfer theorem comes from the fact that
the formula ϕ̂ does not depend on M but just on Σ, T and X . This has an
immediate consequence that once Σ, T and X are fixed, every MSOL prop-
erty of Böhm trees is an MSOL property of terms. For example, since the
set of finite trees is MSOL definable, the set of terms from Terms(Σ, T ,X )
having a normal form, i.e. that reduce to a finite term in a normal form, is
also MSOL definable.

Decidability of higher-order matching restricted to Terms(Σ, T ,X ) with-
out fixpoint operators follows also by the same type of reasoning. The prob-
lem is stated as follows. Given a finite term M , and a closed finite term K
with no occurrence of Y : can one replace free variables of M with terms in
such a way that the result is β-equal to K.
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Corollary 27 Fix Σ, T ,X . For every pair of terms M,K ∈ Terms(Σ, T ,X )
such that K is closed and does not have fixpoint operators. It is decidable
if there is a substitution σ such that Mσ =β K.

Let us briefly sketch the argument. For a term M we will write shape(M)
for an MSOL formula defining the set of terms that can be obtained from
M by substitutions. This formula just states that the top of the tree is the
term M , but in places where M has free variables the tree is arbitrary, but
without Y binders. Since K is a term without Y binder, it has a normal form
K ′ that is a finite term. Since K ′ does not have free variables, shape(K)
defines exactly one term. Suppose that shape(K) is our formula ϕ and take
ϕ̂ given by the theorem. Consider the formula

shape(M) ∧ ϕ̂

We have that a term satisfying this formula is obtained from M by a sub-
stitution, and that its normal form is K ′. So the higher-order matching
problem for M and K reduces to satisfiability of this formula. Observe that
in principle the substitution can use infinite terms. Nevertheless, recall that
if there is a tree satisfying an MSOL formula then there is a regular one.
This means that if there is a solution to a matching problem then there is
one that is a finite term. Here we allowed both M and σ to use fixpoint
operators, we can disallow this by adding one more conjunct to the formula
above. The decidability of the case without fixpoints has already been shown
by Schmidt-Schauß [SS03] (see also[Sal09]).

Next, we would like to present a kind of synthesis result. The task is to
construct a program satisfying a given specification from a given finite set of
modules. The specification is given by an MSOL formula ϕ. Every module
is a finite λY -term.

Corollary 28 Given a formula ϕ and finite set of closed λY -termsM1 . . . ,Ml.
It is decidable if there is a closed term K constructed from M1 . . . ,Ml by
means of application, Y -variables and Y -binders, such that BT (K) � ϕ. If
there is a such a term then there exists a finite one.

The requirement that K does not use constants from the signature is essen-
tial, since otherwise we could get a trivial solution ignoring the modules. For
the proof of the corollary consider terms of the form (λx1 . . . xl.N)M1 . . .Ml

where N is constructed only with applications, Y -variables and Y -binders.
Indeed, after reducing this term l-times we get a term as required in the
corollary. So the restriction on the shape of K can be expressed by a for-
mula shape((λx1 . . . xl.z)M1 . . .Ml) ∧ γ, where γ is a formula saying that
the only labels appearing in the subtree starting in the node corresponding
to z are variables x1, . . . , xl, application, Y -variables, and fixpoint binders.
Summing-up, the solution to the problem states in the corollary is to decide
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the satisfiability of the formula

ϕ̂ ∧ shape((λx1 . . . xl.z)M1 . . .Ml) ∧ γ .

This formula asks for a term of the particular shape such that when evaluated
gives a Böhm tree satisfying ϕ̂. Once again, if there is a solution then there
is a regular solution, that is a finite term.

6 Conclusion

We have shown that every MSOL property of Böhm trees is effectively an
MSOL property of terms. The possibility that such a transfer theorem may
hold has been indicated by a number of results in the literature: Ong’s Theo-
rem [Ong06] stating that the MSOL properties of Böhm trees of λY -terms is
decidable; Courcelle and Knapik’s [CK02b] result showing a similar theorem
for a variant of evaluation of first-order terms; and finally, a result of Sal-
vati [Sal09] demonstrating that in the context of λ-calculus, recognizability
is preserved under inverse homomorphism.

The translation we propose for going form MSOL properties of Böhm
trees to MSOL properties of λY -terms not only works for infinite terms but
also depends on very few properties of terms themselves. We just need to fix
a finite set of λ-variables that a term can use as well as a finite set of types
that the subterms of a term may have. Apart from this, the translation
does not depend on any other structural properties of terms. This is rather
surprising as the set of terms that use a fixed number of λ-variables does not
form a set that is closed under βδ-reduction. For this reason the method of
Courcelle and Knapik could not be extended to higher-order types, since due
to α-conversion intermediate results of evaluation could need an unbounded
number of λ-variables. The invariants on reduction that we express with
the Krivine machine and residuals overcome this difficulty.

The obvious question is the relation of our transfer theorem concern-
ing βδ-reduction to two other transfer results concerning unfolding opera-
tion [CW98] and for Muchnik iteration [Sem84, Wal02b], respectively. Recall
that while Muchnik iteration is strictly stronger than unfolding, the two op-
erations can be used to define the classes of trees forming so called pushdown
hierarchy [CW03].

We cannot compare directly the three results since the transfer theo-
rems for unfolding [CW98] and Muchnik iteration [Sem84, Wal02b] work
on graphs, while our theorem works with λY -terms that seen as graphs are
trees with back edges. For this reason we cannot say that our result im-
plies the other two. Yet, if restricted to trees with back edges, the result on
unfolding is a special case of our result: the unfolding can be simulated by
δ-reduction. We do not know if it is possible to simulate Muchnik iteration
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directly using βδ-reduction. Nevertheless, it is well-known that, up to sim-
ple MSOL-interpretations, every tree in the pushdown hierarchy is a result
of a βδ-reduction of a finite term. Hence, similarly to Muchnik’s iteration,
βδ-reduction allows to obtain all trees in the pushdown hierarchy [Cau02].
Moreover, thanks to the recent result of Parys [Par12], we know that βδ-
reduction can give trees that do not belong to the pushdown hierarchy. This
shows that our transfer theorem is not a consequence of the Muchnik’s the-
orem. The study of relations between Muchnik iteration and βδ-reduction,
as well as constructing new hierarchies using the new transfer theorem, are
interesting directions for further research.
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