
Structural properties of trees and expressivity of

logical formalisms

Mikolaj Bojańczyk and Igor Walukiewicz

1 Introduction

Logics for specifying properties of labeled trees play an important role in several
areas of Computer Science. Recently, attention has turned to logics for unranked
trees, in which there is no a priori bound on the number of children a node may
have. Barceló and Libkin [1] and Libkin [12] catalogue a number of such logics
and contrast their expressive power. Many fundamental problems in this domain
remain unsolved. For example, we do not as yet possess an effective criterion
for determining whether a given property of trees is expressible in the temporal
logics CTL, or CTL*, or in first-order logic with the ancestor relation.

There have been a number of efforts to extend this algebraic theory from
words to trees trees; a notable recent instance is in the work of Ésik and Weil
on preclones [8, 9]. Recently, Bojańczyk and Walukiewicz [7] introduced forest
algebras, a generalization of the syntactic monoid for languages of forests of
unranked trees. This algebraic model is rather simple, and in contrast to others
studied in the literature, has already yielded effective criteria for definability
in a number of logics: see Bojańczyk [4], Bojańczyk-Segoufin-Straubing [6],
Bojańczyk-Segoufin [5]. Forest algebras are also implicit in the work of Benedikt
and Segoufin [3] on first-order logic with successor.

An important motivation for studying forest algebras is to develop tools
necessary for deciding if a given regular language can be defined in first-order
logic. This problem can be formalized in several ways depending on the type of
trees and operations present in the signature. We will show in this document
some dependencies between several natural formalisations of this problem in a
sense that decidability for one setting would give decidability for the other.

2 Trees, Forests and Contexts

Let A be a finite alphabet. Formally, forests and trees over A are expressions
generated by the following rules: (i) if s is a forest and a ∈ A then as is a
tree; (ii) if (t1, . . . , tk) is a finite sequence of trees, then t1 + · · ·+ tk is a forest.
We permit this summation to take place over an empty sequence, yielding the
empty forest, which we denote 0. This gets the recursion started. So, for
example, s = a(b0 + c(a0 + ab0)) + a(a0 + b0) is a forest. Normally, when we

1

write such expressions, we delete the zeros. We depict s in the obvious fashion
as an ordered forest of two ordered trees whose nodes are labeled by the letters
a, b, c. In this example, the two root nodes are both labeled a, and there are five
leaves altogether. The set of forests over A is a monoid with respect to forest
concatenation s+ t, with the empty forest 0 being the identity. We denote this
set by HA.

If x is a node in a forest, then the subtree of x is simply the tree rooted at
x, and the subforest of x is the forest consisting of all subtrees of the children
of x. In other words, if the subtree of x is as, with a ∈ A and s ∈ HA, then
the subforest of x is s. Note that the subforest of x does not include the node x
itself, and is empty if x is a leaf. A forest language over A is any subset of HA.

A context p over A is formed by deleting a leaf from a nonempty forest and
replacing it by a special symbol �. Think of � as a kind of place-holder, or
hole. Given a context p and a forest s, we form a forest ps upon substituting s
for the hole in p.

?

p s ps

In a similar manner, we can substitute another context q for the hole, and obtain
a new context pq. The set of contexts over A forms a monoid, with respect to
context composition pq, with the empty context � being the identity. We denote
this set by VA.

Note that for all forests s, t ∈ HA, VA contains a context s+�+ t, in which
the hole has no parent, such that (s+ � + t)u = s+ u+ t for all u ∈ HA.

Strictly speaking, our trees, forests and contexts are ordered, so that s+t is a
different forest from t+s unless s = t or one of s, t is 0. But all the applications
in the present article effectively concern unordered trees, so there is no harm in
thinking of + as a commutative operation on forests.

3 Logics for Forest Languages

For a general treatment of predicate and temporal logics for unranked trees,
see Libkin [12]. The logics we describe below are all fragments of monadic
second-order logic, and thus the languages they define are all regular forest
languages. These languages can be also represented by automata that are a
minor modification of the standard bottom-up tree automata. The transition
function is modified to cope with unbounded branching, and the definition of

2

acceptance needs to consider states in the roots of all the trees in the forest.
See [7] for the definition.

3.1 First-order logic for trees and forests

Let A be a finite alphabet. Consider first-order logic equipped with unary
predicates Qa for each a ∈ A, and a single binary predicate ≺ . Variables are
interpreted as nodes in forests over A. Qax is interpreted to mean that node x
is labeled a, and x ≺ y to mean that node x is a (non-strict) ancestor of node y.
A sentence φ – that is, a formula without free variables – consequently defines
a language Lφ ⊆ HA consisting of forests over A that satisfy φ. For example,
the sentence

∃x∃y(Qax ∧Qay ∧ ¬(x ≺ y) ∧ ¬(y ≺ x))

defines the set of forests containing two ≺-incomparable occurrences of a. We
denote this logic by FO[≺]. It is more traditional to consider logics over trees
rather than over forests. For FO[≺] we need not worry too much about this
distinction, since we can express in first-order logic the property that a forest
has exactly one component (∃x∀y(x ≺ y)). Thus the property that a set of
trees is first-order definable does not depend on whether we choose to interpret
sentences in trees or in forests.

3.2 Temporal logics

We describe here a general framework for temporal logics interpreted in trees
and forests. By setting appropriate parameters in the framework we generate all
sorts of temporal logics that are traditionally studied. The general framework
is sometimes called graded propositional dynamic logic (graded PDL).
Syntax of temporal formulas. Temporal formulas are built starting with atomic
label formulas a for a ∈ A. We combine temporal formulas with the usual
boolean operations. We also define a temporal operator: if k > 0, Φ is a finite
set of formulas, and L ⊆ Φ+ is a regular language of words over the alphabet
Φ, then EkL is a formula. The idea is that EkL says there are at least k paths
that satisfy L; the precise semantics are defined below. We place an additional
restriction, called unambiguity, on the use of this operator: We require that the
formulas Φ = {φ1, . . . , φn} are formally disjoint: that is, for all i > 1, φi has
the form ψ ∧ ¬

∨
j<i φj for some formula ψ. We write EL for E1L.

Semantics of temporal formulas. Usually, satisfaction for formulas is defined
with respect to trees. For forests, the conventions are less well-established.
Nevertheless, semantics for forests will be important for us, especially in the
context of the wreath products. We will therefore use two notions of satisfaction:
a tree-satisfaction relation t |=t ϕ, which coincides with the usual notion of
satisfaction, and a forest-satisfaction relation t |=f ϕ, which is slightly unusual.
The definition of the two will be mutually recursive. When t is a forest, then
only the forest-satisfaction t |=f ϕ is defined, but when t is a tree, then both
t |=f ϕ and t |=t ϕ are defined, with different meanings.

3

A label formula a is tree-satisfied by the trees whose root label is a, but
is not forest-satisfied by any forest (even if the forest contains only a single
tree). Whether a formula EkL is tree-satisfied by a tree as depends only on the
subforest of the root and not on the root node: that is, as |=t ψ if and only if
s |=f ψ. Finally, if s ∈ HA, then s |=f EkL if and only if there are at least k
distinct paths in s that satisfy L in the following sense: A path x1 · · ·xn is a
sequence of nodes connected by the child relation, beginning in one of the roots,
and ending in some node, not necessarily a leaf. The path satisfies L if there
is a sequence φ1, . . . , φn ∈ Φ such that the word φ1 · · ·φn belongs to L and for
each i = 1, . . . , n, the subtree of xi tree-satisfies φi. Note that tree, and not
forest, satisfaction is required in the subtree of xj . Note also that the paths
need not end in leaves, and that the sequence φ1, . . . , φn is uniquely determined
by the path, due to the unambiguity condition on Φ. As the paths need not
end in leaves, some paths may be prefixes of others, for instance, the tree aaa
forest-satisfies E3a+. Boolean operations have their usual interpretation.

Given a temporal formula ψ, we write Lψ for the set of forests that forest-
satisfy ψ.

EF When ψ describes a property of words, then Fψ describes the words where
ψ holds at some position, possibly the first. We obtain an analogous temporal
operator for trees and forests by defining EFψ to be EL, where L = (¬ψ)∗ψ.
Thus, when s is a forest, s |=f EFψ if and only if some subtree of s, possibly
rooted at a root of s, tree-satisfies ψ. When t is a tree, t |=t EFψ if some
proper subtree of t tree-satisfies ψ. Note how the tree semantics of this temporal
operator resembles the “strict semantics” of EF in which one ignores the current
node, while the forest semantics resemble the non-strict semantics. We denote
by EF the forest languages definable by a formula built from the label formulas
a ∈ A using boolean operations and the temporal operator EF.

CTL When ψ, φ describe properties of words, then ψUφ describes the set of
words a1 · · · an where for some i = 1, . . . , n, the word beginning in position
i satisfies φ, and all the words beginning in positions 1, . . . , i − 1 satisfy ψ.
The analogous operator for trees and forests is E(ψ ∧ ¬φ)∗φ, which we denote
EψUφ. The forest semantics is that the subtree of some node x tree-satisfies the
formula φ, and the subtree at every strict ancestor of x tree-satisfies ψ. For the
tree semantics, the root of the tree is ignored. By nesting this operator we get
the logic CTL. (The dual operator E¬(ψUφ) is redundant in finite trees.)

First-order logic We can use the same formalism to characterize the lan-
guages definable in FO[≺] in terms of a temporal logic.

Theorem 1 A forest language is definable in FO[≺] if and only if it is definable
by a formula in the fragment of the language of temporal formulas using the
operator EkL only for word languages L that are first-order definable.

4

This is a slight adaptation of Hafer and Thomas [10], and Moller and Rabi-
novich [14]. We will give the proof in the full paper. Note that the theorem fails
without the restriction on unambiguity of the alphabet Φ. For instance, if we
took A = {a, b, c}, Φ = {φ1, φ2}, where φ1 = a∨ c, φ2 = b∨ c, then L = (φ1φ2)+

is first-order definable as a word language. However, the language defined by
EL is not first-order definable. (If it were, we would be able to define in first-
order logic the set of forests consisting of a single path with an even number of
occurrences of c.)

CTL* and PDL Finally, we define two more temporal logics by modifying
the definitions above. CTL* is like the fragment of temporal logic in Theorem 1,
except that we only allow k = 1 in EkL. In particular, CTL* is a subset of FO[≺
]. We also consider PDL, which is obtained by restricting the temporal formulas
EkL to k = 1, but without the restriction on L being first-order definable.
If we place no restriction on either the multiplicity k or the regular language
L, we obtain graded PDL. (Actually, one can show, using methods similar to
Theorem 1, that graded PDL has the same expressive power as chain logic,
which is the fragment of monadic second order logic where set quantification is
restricted to chains, i.e. subsets of paths.)

4 Various flavours of first-order definability

We will in this section we show some dependencies between several natural
formalisations of this problem in a sense that decidability for one setting would
give decidability for the other.

A tree t over an alphabet (A,B) can be represented as a first-order structure
Mt = 〈S,≤H ,≤V , {Pa}a∈A, {Pb}b∈B〉 where: ≤H is the horizontal order, i.e.
order between siblings; ≤V is the vertical order, i.e. ancestor-descendant order;
and Pa, Pb are monadic predicates encoding the labels. We can consider first-
order logic over the complete signature FO[≤H ,≤V], or the logic only with
vertical order FO[≤V]. This gives us four problems to study: we can vary logic,
and we can consider either binary or unranked trees.

We want to study the dependencies between the following four problems:

BHV Given a regular language L of binary trees decide if L can be defined in
FO[≤H ,≤V].

BV Given a regular language L of binary trees decide if L can be defined in
FO[≤V].

UHV As 1. but for unranked trees.

UV As 2. but for unranked trees.

Observe that the first case is just binary trees with left and right successors.
The second case is for binary trees with no distinction between successors. Sim-
ilarly, the forth case talks about unranked trees where the successors are not
ordered.

5

We will show that UHV reduces BHV which reduces to BV which in turn
reduces to UV.

A binary tree can be treated as a special case of an unranked tree. This
suggest simple reductions form BHV to BV and from BV to UV.

The simplest case is the reduction BV to UV.

Lemma 2 A language L of binary trees can be defined in FO[≤H] in the do-
main of binary trees iff it can be defined in FO[≤H] in the domain of unranked
trees.

Proof
There is a FO[≤V] formula β saying that each internal node of the tree has
rank 2. So if a formula ϕ ∈ FO[≤V] defines L in the domain of binary trees,
then ϕ ∧ β defines the same set but in the domain of all unranked trees.

Reciprocally, if L is definable in FO[≤V] in the domain of all unranked trees,
then L is definable by the same formula in the domain of binary trees. �

For the reduction of BHV to UV we consider encoding of an order on suc-
cessors into labels. This is possible as trees are binary so we need only two
labels. For a binary tree t over an alphabet (A,B), let enc(t) be the tree over
the alphabet (A× {0, 1}, B × {0, 1}) where the label of each left successor gets
additional tag 0 and that of each right successor gets tag 1 (the root gets tag 0
by convention).

Lemma 3 A language L of binary trees can be defined in FO[≤H ,≤V] iff
enc(L) can be defined in FO[≤V].

Proof
Let γ be a formula FO[≤V] saying that the root has tag 0 and that each internal
node has precisely one son with tag 0 and one son with tag 1. It should be clear
that t � γ iff t = enc(t′) for some binary tree t′ over (A,B).

Now, given a formula ϕ from FO[≤H ,≤V] defining a set of binary trees L we
can write a formula ϕ′ such that ϕ′ ∧ γ defines enc(L). We need just to change
references to the alphabet (A,B) to corresponding references to the alphabet
(A× {0, 1}, B × {0, 1}).

In the other direction. If the set enc(L) is defined by a FO[≤H ,≤V] formula
ψ then we can transform this formula to ψ′ such that t � ψ′ iff enc(t) � ψ.
For this it is enough to replace references to the extended alphabet with the
references to the alphabet (A,B). For example a subformula Pb,0(x) is changed
to Pb(x) ∧ left(x), where left(x) is a formula saying that a node is a left son.
Similarly for all other letters. �

Thanks to this lemma, to decide BHV, given an automaton for a language L
of binary trees we can compute an automaton for enc(L) and use a hypothetical
decision procedure for UV.

Next we consider a reduction from UHV to BHV. This reduction is slightly
more technical but very similar to those presented above. As the construction

6

is well-known we only sketch it briefly. To reduce the case of unranked trees
to binary trees we use a standard encoding putting all successors of a node on
the leftmost branch of the binary tree. Let encbin(t) denote the binary tree
encoding of t. The following lemma is a folklore.

Lemma 4 A language of unranked trees can be defined in FO[≤H ,≤V] iff
encbin(L) can be defined in FO[≤H ,≤V].

We can conclude since given an automaton for L we can compute and au-
tomaton for encbin(L).

Finally we want to comment on the problems of reducing UV to UHV. A
hypothetical reduction of this kind could for example show that horizontal order
does not matter. This turns out not to be the case as the following two examples
show.

Fact 5 The language “unranked trees with an even number of nodes” can be
defined in monadic second-order logic with vertical and horizontal order; and
its syntactic algebra satisfies h + g = g + h. However, this language cannot be
defined in monadic second-order logic with only vertical order.

Fact 6 The language “unranked trees with all internal nodes of degree two and
all paths of even length” can be defined in FO[≤H ,≤V] but not in FO[≤V].

The later fact prevents us from having a straightforward reduction from UV
to UHV. We conjecture that it may be still possible in the case of chain logic.

Conjecture If a language L can be defined in CL[≤H ,≤V] and its syntactic
algebra satisfies h+ g = g + h then it can be defined in CL[[≤V].

5 UTL

It will be convenient to have a temporal logic instead of first-order logic or
chain logic. In the following we define UTL (unranked temporal logic) which is
equivalent to FO[≤H ,≤V]. There are variants of it that define FO[≤V] as well
as CL[≤H ,≤V] and CL[≤V].

Definition 7 (UTL) A formula of UTL specifies a property of a forest with a
distinguished root node.

• Every label a is a formula; such a formula holds in forest if the distin-
guished root has label a.

• Boolean combinations, including negation, are allowed.

• Let Γ be a finite set of formulas, and let L ⊆ Γ∗ be a first-order definable
word languages. Then both LL, RL, and EL are formulas. The semantics
are defined as follows:

7

– The formula LL holds in a forest t1+ · · ·+ti+ · · ·+tn with the root of
ti distinguished if there is a sequence ϕ1 · · ·ϕi−1 ∈ L and such that
ϕi holds in ti for all i = 1, . . . , i− 1.

– Similarly for RL but this time we consider ti+1 · · · tn.

– The formula EL holds in a tree t if there is a sequence ϕ1 · · ·ϕn ∈ L
and a maximal path x1, . . . , xn such that ϕi holds in the subtree t|i
for all i = 1, . . . , n. Here a maximal path is a sequence of nodes that
leads from the root to some leaf (including both).

This syntax is very close to CLT∗. Construct EL is equivalent to Eα con-
struct of CLT∗. Both talk about existence of a path, one uses an aperiodic
language the other an LTL formula; which comes to the same thing as the two
formalisms are equivalent [13, 15, 11, 19]. The construct LL is a like EL but on
siblings to the left of the current node. Similarly, RL talks about the sequence
of siblings to the right of the current node. One could introduce more CLT∗-
like operators both for future and the past over siblings [2] but this will not be
necessary for us here. The following theorem was proved in [2] (Theorem 3.4).
The slight modification is that contrary to what is claimed in op. cit. a since
operator on siblings is necessary.

Theorem 8 UTL is equivalent to FO[≤H ,≤V].

Proof
By definition UTL can be translated to FO[≤H ,≤V]. To prove the opposite
direction we use the composition method for trees (see [18] for an introduction).
We start with some definitions. As often in the context of E-F games we will
consider formulas in prenex normal form. The quantifier depth of a formula is
the depth of nesting of quantifiers, for formulas in prenex normal form it is the
same as the number of quantifiers.

A n-type of a forest is a set of first-order sentences in prenex normal form of
quantifier depth n that are true in the forest. Let Typesn denote the set of all
possible n-types. Recall that equivalence of n-types is characterized by n-step
Ehrenfeucht-Fraise games. We will also need a notion of a n-type of a node r in
a forest t. This is a set of prenex formulas ϕ(x) of quantifier depth n, and with
one free variable x such that ϕ(r) holds in t.

For a forest t = t1 + · · · + tn we define rootsn(t) to be the word θ1 . . . θn
where θi is the n-type of ti. So rootsn(t) is a word over the alphabet Typesn.
As a word is also a tree, the notion of n-type is applicable to words too. The
following lemma says that in order to know n-type of a forest t it is enough to
know n-type of the word rootsn(t).

Lemma 9 The n-type of t is determined by the n-type of rootsn(t).

Proof
By an E-F transfer argument. �

We will need another lemma of this kind but now talking about paths in a
tree. First we give some definitions. For a tree t and its node s we denote by

8

• θn(t, s) the n-type of the subtree rooted in s;

• θ←n (t, s) the n-type of the forest of trees rooted in nodes s′ <H s, i.e,
siblings of s to the left of s without considering s;

• θ→n (t, s) the n-type of the forest of trees rooted in nodes s′ >H s, i.e.,
siblings of s to the right of s without considering s.

Finally, we define pathn(t, s) which will be a word describing some type
structure. Suppose that the path from the root of t to s is s0, . . . , si−1, si = s.
Then path(t, s) is a word

(θ←n (t, s0), λ(s0), θ→n (t, s0)), . . . , (θ←n (t, si−1), λ(si−1), θ→n (t, si−1)),

(θ←n (t, si), θn(t, si), θ
→
n (t, si)),

That is, the letters are triples consisting of a n-type of the forest to the left of
the node, the label of the node, and the n-type of the forest to the right. There
is a small change in the last node where the label is replaced by n-type of the
tree rooted in the node. We will use ∆n to denote the set of letters that can
appear in words of the form pathn(t, s), i.e., ∆n = Typesn×Σ×Typesn∪Types3n.

Lemma 10 The n-type of a node r in a forest t is determined by the n-type of
pathn(t, s).

Proof
The proof is easy using strategy transfer technique. �

By induction on the quantifier depth we show

(*) for every FO[≤H ,≤V] sentence ϕ in a prenex normal form there
is an UTL formula αϕ such that for every tree t: t � ϕ iff t � αϕ.

Notice that this statement talks only about trees. Before proving the statement
we show how it implies a statement for forests. In case of forest UTL talks
about forests with a distinguished root so instead of sentences of FO[≤H ,≤v]
we rather take formulas with one free variable:

(**) for every FO[≤,≤V] formula ϕ(x) with one free variable, there
is an UTL formula αϕ such that for every forest t with a distinguished
root r we have: t � ϕ(r) iff t, r � αϕ.

Suppose that (*) holds for formulas of a quantifier depth n, we will show how
to deduce (**) for formulas of the same quantifier depth. By Lemma 10 the
n-type of r in t is determined by three types: θ←n (t, r), θn(t, r), and θ→n (t, r).
By hypothesis we can calculate θn(t, r), as well types of all other trees in t. We
show how to calculate θ←n (t, r), the similar argument works for θ→n (t, r). Let tl
be the forest of trees to the left of r. With this notation, θ←(t, r) is the type
of tl. By Lemma 9 θ←(t, r) is determined by the n-type of roots(tl). Since
n-type is a first-order logic formula, for every n-type θ there is an aperiodic

9

language Lθ that describes the roots of forest having type θ. Language Lθ is
over the alphabet Typesn, so it cannot be immediately used in UTL formula. By
assumption, for each type θ we have an UTL formula which defines trees of type
θ. Let L′θ be obtained form Lθ by a homomorphism mapping each type to an
UTL formula defining it. We get that θ←(t, r) = θ iff t, r � LL′θ. Summarizing
αϕ will be a conjunction of formulas of the form LL′θl ∧ αθ ∧ RL′θr for triples
(θl, θ, θr) coming from trees satisfying ϕ.

Now we come back to the inductive proof of (*). The basic step is when
the depth is 1. In this the sentence in question is either of the form ∃x.ψ(x)
or ∀x.ψ(x) where ψ(x) is quantifier free. It is enough to consider sentence of
the first form because the later are obtained by negation. As there is only one
variable, the truth of the sentence of this form depends only on the set of labels
present in a tree. It is easy to express this kind of properties in UTL.

For the induction step we have take a sentence ϕ of the form ∃x.ϕ′(x) where
ϕ′ has quantifier depth n. In this case, Lemma 10 gives us a first order sentence
ψ such that for every tree t and its node s:

t � ϕ′(s) iff pathn(t, s) � ψ

Let L be the language of words over alphabet ∆n which satisfy ψ. As ψ is a
first-order sentence, L is aperiodic. So ∃x.ϕ′(x) holds in t iff there is a node r
in t such that path(t, r) ∈ L. The above discussion gives us for every triple of
n-types θ1, θ2, θ3 an UTL formula that holds in r iff (θ←(t, r), θ(t, r), θ→(t, r)) =
(θ1, θ2, θ3). Let L′ be obtained form L by a homomorphism replacing each letter
of ∆n by an appropriate UTL formula. We claim that ∃x.ϕ′(x) is equivalent to
EL′(tt)∗. Indeed, we have that ∃x, ϕ′(x) holds iff there is r with pathn(t, r) ∈ L
which is equivalent to saying that the path from the root to some r is in L’,
which is equivalent to the fact that some maximal path is in L′(tt)∗, which in
turn is expressed by EL′(tt)∗. �

The proof of this theorem can be also done via translation to binary trees.
Indeed, Hafer and Thomas [10] have shown that over binary trees FO[≤H ,≤V]
is equivalent to CTL∗. In [2] it is explained how to use this result to prove a
result like Theorem 8. We preferred to reprove this result using composition
method as it requires less encodings and writing complicated formulas.

Remark 11 In case of unranked trees, Moller and Rabinovich [14] show that
FO[≤V] is equivalent to CTL∗ with counting modalities Dnα which says that
there are exactly n successors satisfying α. In our formalism CTL∗ with Dn

would correspond to replacing the operator H(L0, L1) with an operator H(L)
having the obvious semantics. Moreover, we would need to require that L is
not only aperiodic but also commutative, i.e., membership in L depends only
on the number of occurrences of each letter.

Remark 12 Characterization of CL[≤H ,≤V] is obtained by dropping the re-
quirement that L needs to be first-order definable in operator EL. In a similar
way CL[≤V] is characterized by our logic where in EL all regular languages are

10

permitted and in H(L0, L1) the two languages should aperiodic and commuta-
tive.

6 Chain logic and CTL*

In this section we comment on extending Theorem 8. There are two directions.
The first direction is discussed in Section 6.1 and concerns CTL*. Using the

same approach as in 4, we can show that definability for CTL* can be reduced
to definability for first-order logic. Whether the opposite reduction holds is left
as an open problem.

The second direction is discussed in Section 6.2 and concerns chain logic. It
turns out that for chain logic, the picture is similar to the one for first-order
logic. There are several possible variants, and a result similar to Theorem 8,
which relates these variants, also holds.

6.1 CTL*

The logic CTL* is the restriction of CUTL (commutative unranked tree logic,
defined in Section 5), where the next modality is only allowed in the form Xϕ.
A formula Xϕ holds in a tree if some successor subtree satisfies ϕ. In the style
of Section 5, this is the same as saying that H(K) is only allowed for word
languages K ⊆ A∗ of the form A∗aA∗.

Proposition 13 A language of unranked trees can be defined in CTL* if and
only if it can be defined in first-order logic without horizontal order, and its
syntactic algebra satisfies h+ h = h.

In particular, the above proposition shows that the problem: “can a given
language of unranked trees be defined in CTL*?” can be reduced to any one of
the first-order definability problems mentioned in Theorem 8. It seems, however,
that the converse reduction requires some additional insight.

6.2 Chain logic

Chain logic is monadic second order logic, where set quantification is restricted
to chains, i.e. sets of nodes linearly ordered by the vertical order. Chain logic
has been studied mostly for binary (or unary, ternary etc.) trees [16, 17]. For
unranked trees, it is tempting to consider an extension of chain logic, where
quantification is also allowed for sets of siblings (i.e. chains with respect to the
horizontal order). We call this logic extended chain logic. Since there are many
parameters involved (binary / unranked, horizontal order / no horizontal order,
extended / not extended), there is a proliferation of chain logics:

1. Chain logic over binary trees. Here, the extended model does not add
expressive power; likewise for the horizontal order.

2. Chain logic over unranked trees without horizontal order.

11

3. Chain logic over unranked trees with horizontal order.

4. Extended chain logic over unranked trees without horizontal order.

5. Extended chain logic over unranked trees with horizontal order.

One can easily see that the logics 2,3,4,5 have different expressive powers. Using
techniques as in the proof of Theorem 8, one can show that the definability
problem is just as difficult for logics 1,2,4 and 5 (we will comment on these
reductions later on). It is not clear how the definability problem for logic 3 is
related to the other four, though.

We will not write out the entire reductions between the logics 1,2,4 and 5,
but restrain ourselves to highlighting the differences with respect to Theorem 8.
The reduction of 1 to 2 works the same way the reduction in Section 4. The
reduction of 5 to 1 is done as in Section 4; we also use the same encoding. The
only difficulty comes in showing the “if” direction in the analogue of Lemma 4:

Lemma 14 If enc(L) is definable in chain logic over binary trees (with vertical
order and left/right successors), then L is definable in extended chain logic over
unranked trees (with horizontal and vertical order).

Proof
The difficulty here is that a chain in the binary tree enc(t) does not correspond
to a chain in the original tree t; it corresponds to an extended chain. An
extended chain is a set of nodes {x1, . . . , xn} such that for each i = 1, . . . , n− 1
the node xi is either an ancestor of xi+1, or it is a sibling to the left of xi+1

(but not necessarily immediately to the left). One can show that quantification
over extended chains does not add to the power of extended chain logic with
horizontal and vertical order. �

Both the reductions from 2 to 4 and from 4 to 5 are done along the same
lines as in Section 4. The key results are, respectively:

Proposition 15 A language of unranked trees can be defined in chain logic
without horizontal order if and only if it can be defined in extended chain logic
without horizontal order, and its syntactic algebra satisfies hω = hω+1.

Proposition 16 A language of unranked trees can be defined in extended chain
logic without horizontal order if and only if it can be defined in extended chain
logic with horizontal order, and its syntactic algebra satisfies h+ g = g + h.

For the reduction of 4 to 3 we use a similar approach as in the previous
section. The important result is the following lemma:

Lemma 17 Let L be tree language definable in first-order logic with horizontal
order. If the syntactic forest algebra of L satisfies h+h = h, then L is definable
in CTL*.

12

References

[1] Pablo Barceló and Leonid Libkin. Temporal logics over unranked trees. In
LICS, pages 31–40. IEEE Computer Society, 2005.

[2] Pablo Barceló and Leonid Libkin. Temporal logics over unranked trees. In
LICS, pages 31–40, 2005.

[3] M. Benedikt and L. Segoufin. Regular languages definable in FO. In
STACS’05, volume 3404 of LNCS, pages 327 – 339, 2005. See the cor-
rected version on the authors web page.

[4] Mikolaj Bojanczyk. Two-way unary temporal logic over trees. In LICS,
pages 121–130, 2007.

[5] Mikolaj Bojanczyk and Luc Segoufin. Tree languages defined in first-order
logic with one quantifier alternation. In ICALP, pages 233–245, 2008.

[6] Mikolaj Bojanczyk, Luc Segoufin, and Howard Straubing. Piecewise
testable tree languages. In LICS, pages 442–451. IEEE Computer Soci-
ety, 2008.

[7] Mikolaj Bojanczyk and Igor Walukiewicz. Forest algebras. In J. Flum,
Erich Grädel, and Thomas Wilke, editors, Logic and Automata, volume 2
of Texts in Logic and Games, pages 107–132. Amsterdam University Press,
2007.

[8] Z. Ésik and P. Weil. On logically defined recognizable tree languages.
In Paritosh K. Pandya and Jaikumar Radhakrishnan, editors, FST TCS
2003: Foundations of Software Technology and Theoretical Computer Sci-
ence, 23rd Conference, Mumbai, India, December 15-17, 2003, Proceed-
ings, volume 2914 of Lecture Notes in Computer Science, pages 195–207.
Springer, 2003.

[9] Z. Ésik and P. Weil. Algebraic recognizability of regular tree languages.
Theor. Comput. Sci, 340(1):291–321, 2005.

[10] T. Hafer and W. Thomas. Computation tree logic CTL∗ and path quan-
tifiers in the monadic theory of the binary tree. In 14th Internat. Coll. on
Automata, Languages and Programming (ICALP’87), volume 267 of LNCS,
pages 269–279, 1987.

[11] J. A. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
Univ. of California, Los Angeles, 1968.

[12] L. Libkin. Logics for unranked trees: an overview. In Automata, languages
and programming, volume 3580 of Lecture Notes in Comput. Sci., pages
35–50. Springer, Berlin, 2005.

[13] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, Cam-
bridge Mass., 1971.

13

[14] Faron Moller and Alexander Moshe Rabinovich. Counting on CTL*: on
the expressive power of monadic path logic. Inf. Comput., 184(1):147–159,
2003.

[15] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

[16] W. Thomas. Logical aspects in the study of tree languages. In Colloquium
on Trees and Algebra in Programming (ICALP’84), pages 31–50, 1984.

[17] W. Thomas. On chain logic, path logic, and first-order logic over infinite
trees. In Logic in Computer Science, pages 245–256, 1987.

[18] Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Language Theory, volume III,
pages 389–455. Springer, 1997.

[19] T. Wilke. Classifying discrete temporal properties. In STACS’99, volume
1563 of LNCS, pages 32–46, 1999.

14

	Introduction
	Trees, Forests and Contexts
	Logics for Forest Languages
	First-order logic for trees and forests
	Temporal logics

	Various flavours of first-order definability
	UTL
	Chain logic and CTL*
	CTL*
	Chain logic

