
FREC delivrable 4: Recognizability for λ-terms

This document constitutes the delivrable 4 of the ANR project FREC. It
describes the foundations of recognizability in the simply typed λ-calculus. It is
divided in two parts:

1. the first part describes the notion, shows how it relates to the notions of rec-
ognizability in free algebras and in free monoids. It also gives some examples
of applications in the setting of λ-calculus by providing elegant solutions to
difficult problems.

2. the second part (which was written in collaboration with Giulio Manzonetto,
Mai Gehrke, and Henk Barendregt) describes in detail the correspondence
between the “algebraic view” and the “automata theoretic view” of recog-
nizability in simply typed λ-calculus. This correspondence is glossed over
in the first part. It shows that intersection types, representing automata in
the setting of λ-calculus, and finite models, representing algebra in this set-
ting, have the same expressive power for defining sets of λ-term. This part
is also more oriented towards connecting two problems of λ-calculus: the
inhabitation problem for intersection types and the λ-definability problem.

Part I

Recognizability in the
λ-calculus

1 Introduction

Formal language theory is mainly concerned with the study of structures like
strings, trees or even graphs. In this paper we try to add simply typed λ-terms
to the scope of this theory. This article is a first step: the definition of recognizable
sets which are a fundamental notion of formal language theory.

Languages of λ-terms appear in several research areas, but there has been
really few research explicitly mentioning them and even fewer studying them. To
our knowledge the first work explicitly defining a notion of language of λ-terms
is that of de Groote [1]. In mathematical linguistics, the pioneering work Mon-
tague [2] shows how to connect syntax and semantics of natural language with
the simply typed λ-calculus. Syntactic structures are interpreted via a homomor-
phism built with λ-terms. The normal forms obtained this way denote formulae
of higher-order logic whose interpretation in a suitable model gives the seman-
tics of the sentence. The set of formulae that this technique allows to generate
can be seen as a language and one may wonder whether such a language can
be parsed similarly to other languages like context-free languages. Parsing such
languages results in generating sentences from their meaning representation. We
have showed that this could effectively be done [3].

Still in mathematical linguistics, the type-logical tradition originating from
Lambek’s work [4], defines syntactic structures as proofs in some substructural
logic. Several proposals have emerged in order to control the structure of those
proofs such as in Moortgat’s work [5] and his followers. These proofs may be
represented as simply typed λ-terms and the set of syntactic structures defines
a language of λ-terms.

Since simply typed λ-terms generalize both strings and trees, a notion of
recognizable language of simply typed λ-terms should naturally extend those al-
ready defined for strings and trees. Furthermore, these languages should also be
closed under the operational semantics of the λ-calculus, i.e. βη-convertibility.
The easiest way to obtain such an extension is to use the algebraic characteri-
zation of recognizable sets of strings or trees which says that recognizable sets
are precisely the sets that are the union of equivalence classes of a finite con-
gruence. Generalizing this definition to sets of simply typed λ-terms consists in
saying that such sets are recognizable if and only if they the set of terms that
are interpreted as certain points in a finite model. But such a definition may
not be useful in certain situations, this is the reason why we need a notion of
automaton of λ-terms that coincides with that of recognizability. We define such
automata using intersection types.

This work provides a natural framework in which several results that have
appeared in the literature on simply typed λ-calculus can be related. In particu-
lar, our work shows that Urzyczyn’s result on the undecidability of the emptiness
problem for intersection types [6] can be seen as a corollary of Loader’s result
on the undecidability of λ-definability [7]. This shall be developed in greater
details in the second part of the document. Moreover, we have showed in [3]
that the singleton language can be defined with intersection types, the equiva-
lence we establish here between recognizability in terms of finite models and in

terms of automata gives an alternate proof of Statman’s completeness theorem
[8] (see also [9]). Furthermore, Statman [8] has showed that higher order match-
ing is related to λ-definability. Since our notion of recognizability is related to
λ-definability it gives tools with which we can study this problem.

The paper is organized as follows: section 2 gives the necessary definitions,
section 3 gives the definition of recognizable sets of λ-terms. In section 4 we
give an automaton-like characterization of recognizability. Section 5 gives its
closure properties and section 6 shows some basic applications of the notion of
recognizability for parsing and higher order matching. Finally we conclude in
section 7.

2 Preliminaries

We here briefly review various notions concerning the simply typed λ-calculus
and some related notions.

2.1 Simply typed λ-calculus

Higher Order Signatures (HOS) declare a finite number of constants by assigning
them types. An HOS Σ is a triple (A, C, τ), where A is a finite set of atomic types,
from which the set of complex types, TΣ , is built using the binary infix operator
→, C is a finite set of constants and τ is a function from C to TΣ . As usual, we
will consider that → associates to the right and write α1 → · · · → αn → α for
the type (α1 → (· · · → (αn → α) · · ·)). The order of a type α, ord(α), is 1 when
α is atomic and max(ord(α1) + 1, ord(α2)) when α = α1 → α2. By extension,
the order of a HOS is the maximal order of type it associates to a constant.
We suppose that we are given an infinite countable set of λ-variables V . We use
types à la Church and variables explicitly carry their types. So we will write xα,
yα or zα (possibly with indices) the elements of V × {α}, the variables of type
α. A HOS Σ defines a set of simply typed λ-terms ΛΣ . This set is the union of
the sets of the family (ΛαΣ)α∈TΣ defined as the smallest sets verifying:

1. xα ∈ ΛαΣ ,

2. for c ∈ C, c ∈ Λτ(c)Σ ,

3. if M1 ∈ Λα→βΣ and M2 ∈ ΛαΣ then (M1M2) ∈ ΛβΣ ,

4. if M ∈ Λβ then λxα.M ∈ Λα→βΣ .

We take for granted the notions of free variables, closed terms, substitution, the
various notions of conversions and reductions associated to the λ-calculus, the
notions of normal form, of η-long form (or long form) and the notion of linearity.
We write ΛαΣ,W to designates the set of terms of type α built on Σ whose set of
free variables is included in W .

2.2 Trees and strings as λ-terms

A HOS is said to be a tree-HOS when it is a second order HOS and that it uses
only one type namely o. We write on → o in the place of o→ · · · → o︸ ︷︷ ︸

n

→ o and

say that a constant of type on → o has arity n. It is easy to see that every freely
and finitely generated sets of ranked trees can be seen as a the closed normal
terms of type o built on a tree-HOS.

A HOS is said to be a string-HOS when it is a tree-HOS whose constants all
have arity 1. Strings are represented as closed terms of type o→ o and the string
c1 . . . cn is represented by the term λxo.c1(. . . (cnx

o) . . .) denoted by /c1 . . . cn/.
The empty string is λxo.xo and the concatenation operation can be represented
by function composition λxo.s1(s2 x

o) (c.f. [1]).

2.3 Homomorphisms

A homomorphism between the signatures Σ1 and Σ2 is a pair (g, h) such that g
maps TΣ1 to TΣ2 , h maps ΛΣ1 to ΛΣ2 and verify the following properties:

1. g(α→ β) = g(α)→ g(β),
2. h(xα) = xg(α),

3. h(c) is a closed term of Λ
g(τ(c))
Σ2

,
4. h(M1M2) = h(M1)h(M2) and
5. h(λxβ .M) = λxg(β).h(M).

A homomorphism is said to be linear whenever constants are mapped to
linear terms. We write H(α) and H(M) respectively instead of g(α) and of
h(M) for a given homomorphism H = (g, h). Note that if H is a homomorphism

from Σ1 to Σ2 and M ∈ ΛαΣ1
then H(M) ∈ ΛH(α)

Σ2
.

The order of a homomorphismH is the maximal order of the type it associates
to an atomic type. The usual notion of tree-homomorphism (resp. string homo-
morphism) is a first order homomorphism (in our sense) between tree-signatures
(resp. string-signatures). A first order homomorphism between Σ1 and Σ2 that
maps constants of Σ1 to constants of Σ2 is called a relabeling.

2.4 Models

Given a signature Σ, a full model of Σ is a pair M = ((Mα)α∈TΣ , ρ) where:

1. (Mα)α∈TΣ is a family of sets verifying:

(a) for all α, β ∈ TΣ , Mα→β =MαMβ

,
(b) the sets Mα such that α is atomic are pairwise disjoint.

2. ρ is a function from C to Mα so that α = ρ(c).

A full model, M = ((Mα)α∈TΣ , ρ), of Σ is said finite when for all α ∈ TΣ , Mα

is a finite set. Remark that M is finite if and only if for all atomic types α, Mα

is finite.

Given M = ((Mα)α∈TΣ , ρ) a full model of Σ, the terms of ΛαΣ are interpreted
as elements ofMα. This interpretation necessitates the definition of variable as-
signments which are partial functions that associate elements ofMα to variables
like xα. A variable assignment is said finite when its domain is finite. Given a
variable assignment ν, a variable xα and m ∈ Mα we define ν[xα ← m] to be
the variable assignment verifying:

ν[xα ← m](yβ)

{
m if yβ = xα

ν(yβ) otherwise

Given a full model M = ((Mα)α∈TΣ , ρ) a variable assignment ν, the inter-
pretation of the elements of ΛΣ (whose sets of free variables are included in the
domain of definition of ν) in M is inductively defined as follows:

1. [[xα]]
M
ν = ν(xα)

2. [[c]]
M
ν = ρ(c)

3. [[M1M2]]
M
ν = [[M1]]

M
ν ([[M2]]

M
ν)

4. [[λxα.M]]
M
ν is the function which maps m ∈Mα to [[M]]

M
ν[xα←m].

It is well-known that the semantics of λ-terms is invariant modulo βη-reduction.

3 Recognizable sets of λ-terms

We wish to extend the notion of recognizability that already exists for strings
and trees to λ-terms. An abstract way of defining recognizability for strings
and trees is to use Myhill-Nerode theorem [10], [11], that describes it in terms of
congruence of finite index over strings or trees which is equivalent to describing it
in terms of finite algebra for trees or finite semigroups for strings. This approach
has been successfully extended in the seminal paper [12] to any abstract algebra.
We shall follow this line of work in order to define recognizability for the simply
typed λ-calculus. Since the finite full models form the functional closure of finite
algebra, we use them so as to extend recognizability to λ-terms.

Definition 1. Given a HOS Σ and α ∈ TΣ a set R included in ΛαΣ is said to
be recognizable iff there is a finite and full model M = ((Mα)α∈TΣ , ρ) a finite

variable assignment ν and a subset P of Mα such that: R = {M |[[M]]
M
ν ∈ P}.

Note that in this definition when ν is chosen to be the empty assignment
function then the set R only contains closed terms. In particular, when Σ is
a tree (resp. string) signature, and that α is the atomic type o (resp. the type
o → o) then the set of closed λ-terms that are recognizable correspond exactly
to set of recognizable trees (resp. strings).

We give some examples of this fact by showing how to represent some recog-
nizable sets of strings or of string as recognizable sets of λ-terms.

Example 1. Let Σ be the tree signature declaring the operators +, 1 which
are respectively binary and nullary. Let A be an automaton with the states
{even; odd}, where even is the final state, and the rules:

+ even even → even

+ odd odd → even

+ even odd → odd

+ odd even → odd

1→ odd

So as to define the set of trees recognized by A as a recognizable set of λ-terms
it suffices to define M to be the model of Σ such thatMo = {even; odd} and the
interpretation of + and 1 in M are given by:

[[+]]
M

(even)(even) = even

[[+]]
M

(odd)(odd) = even

[[+]]
M

(even)(odd) = odd

[[+]]
M

(odd)(even) = odd

[[1]] = odd

It is then easy to check that the set of trees recognized by A is the set

{M |[[M]]
M

= even}.

This shows that the language recognized by A is a recognizable set of λ-terms.

Example 2. Let Σ be a string signature declaring the letters a and b. If we define
a string automaton with states {qe,e; qe,o; qo,e; qo,o} whose initial and final states
are respectively qe,e and qo,o (the automaton has a unique final state), and with
the following transition function:

δ(a, qe,e) = qo,e δ(a, qe,o) = qo,o
δ(a, qo,e) = qe,e δ(a, qo,o) = qe,o
δ(b, qe,e) = qe,o δ(b, qe,o) = qe,e
δ(b, qo,e) = qo,o δ(b, qo,o) = qo,e

Then we let M be the model of Σ generated by the setMo = {qe,e; qe,o; qo,e; qo,o},
we interpret letters as follows:

[[a]]
M

(qe,e) = qo,e [[a]]
M

(qo,o) = qe,o
[[a]]

M
(qe,e) = qo,e [[a]]

M
(qe,o) = qo,o

[[b]]
M

(qe,o) = qe,e [[b]]
M

(qe,e) = qe,o
[[b]]

M
(qo,o) = qo,e [[b]]

M
(qo,e) = qo,o

Then it is easy to check that the set of strings recognized by the automaton
is {w|[[/w/]]M(qo,o) = qe,e} this shows that the set {/w/|[[/w/]]M ∈ N} where
N = {f ∈Mo→o|f(qo,o) = qe,e} is recognizable.

What the previous examples illustrate is that the notion of recognizability
we define on λ-terms is an extension of the notions of recognizability for strings
and trees in the sense that a set of ranked trees built on a ranked alphabet Σ,
R is recognizable if and only if it is a recognizable set of λ-terms; similarly a set
of string, built on an alphabet Σ, R is recognizable if and only if the set

{M ∈ Λo→oΣ |M is closed andM =βη /w/ for some w ∈ R}

is a recognizable set of λ-terms.
The result by Loader [7] shows that in general it is undecidable to check

whether a recognizable set is empty. But as soon as the finite and full model and
the assignment function are given we can check whether a term is in the set. In
what follows we give a mechanical way (corresponding to automata for trees or
strings) to define recognizable sets and check whether a certain term belongs to
that set.

A classical and simple example of recognizable set of trees being the set of
true boolean formulae, we exemplify the notion of recognizability for λ-terms
with the set of true Quantified Boolean Formulae (QBF). For this it suffices to
use a HOS B whose constants are: ∧ : b2 → b, ∨ : b2 → b, ¬ : b→ b, 1 : b, 0 : b,
∀ : (b → b) → b and ∃ : (b → b) → b. We use a finite model B = ((Bα)α∈TB , ρ)
such that Bb = {0; 1} and ρ associates the obvious functions to the constants of
B. Then the set of terms representing a true QBF is the set of closed λ-terms of
Bb which are interpreted as 1 in B and therefore this set is recognizable.

4 Automata characterizing recognizable sets

We here generalize the notion of automata for trees and strings in order to obtain
a mechanical definition of recognizability for λ-terms. Our notion of automaton is
based on the notion of Higher Order Intersection Signature (HOIS) introduced
in [3] which, in turn, is based on intersection types [13]. A HOIS is a tuple
Π = (Σ, I, ι, χ) where Σ is a HOS, I is a finite set of atomic intersection types,
ι is a function from I to the atomic types of Σ, χ is a function that associates

to every element of C a subset of ∩τ(c)Π where (∩αΠ)α∈TΣ is the smallest family
verifying:

1. for α and atomic type ∩αΠ = ι−1(α),

2. ∩α→βΠ = 2∩
α
Π × {α} × ∩βΠ (we write 2P , the powerset of the set P)

A trivial induction on the structure of α shows that for each type α, the set ∩αΠ
is finite.

We now define the type system that allows to associate types to λ-terms.
Given a HOIS Π = (Σ, I, ι, χ), a Π-typing environment (or simply, typing envi-
ronment, when there is no ambiguity) , is a partial mapping from typed variables
to 2∩Π whose domain is finite and such that Γ (xα), when it is defined, is included
in ∩αΠ . We write Γ to denote the domain of Γ . Judgements over Π are objects
of the form Γ `Π M : p where Γ is a typing environment, M is an element of

ΛΣ and p is an element of ∩Π . Judgements are derived by using the following
inference system:

p ∈ Γ (xα)
Axiom

Γ `Π xα : p

p ∈ χ(c)
Const

Γ `Π c : p

Γ `Π M : p p vαΠ q
Sub

Γ `Π M : q

Γ, xα : S `Π M : p
Abst

Γ `Π λxα.M : (S, α, p)

Γ `Π M : (S, α, p) N ∈ Λα
Σ,Γ

∀q ∈ S. Γ `Π N : q
App

Γ ` (MN) : p

Where the relation vαΠ is defined as follows:

i ∈ ι(α)

i vιΠ i

T ⊆ ∩αΠ ∀p ∈ S.∃q ∈ T.q vαΠ p

T EαΠ S

S EαΠ T q vβΠ p

(T, α, q) vα→βΠ (S, α, p)

Notice that the rule App, has two premises, concerning N . The reason of
being of the premise N ∈ Λα

Σ,Γ
is that when M has an intersection type of the

form (∅, α, p), the premise ∀q ∈ S. Γ `Π N : q is trivially true and without
such a premise we would derive judgments on terms which would not be simply
typed.

We will use the notation Γ `Π M : S where S is a subset of ∩αΠ to denote
the all the judgements of the form Γ `Π M : p where p in S. In the same spirit,
given S and T that are respectively subsets of ∩αΠ and of ∩βΠ , we write (S, α, T)

to denote the subset of ∩α→βΠ , {(S, α, p)|p ∈ T}.
We now give the principal properties of that system. The proofs of those

properties can be found in [3].

Theorem 1 (subject reduction). If Γ `Π M : p is derivable and M
∗→βη N

then Γ `Π N : p is derivable.

Notice that this Theorem would only hold for β-reduction without the use of
the rule Sub.

Theorem 2 (subject expansion). If M ∈ ΛαΣ, M
∗→βη N and Γ `Π N : p is

derivable then Γ `Π M : p is derivable.

Theorem 3 (Singleton). Given M ∈ ΛαΣ, there is Π, Γ and S ⊆ ∩αΠ such
that given N ∈ ΛαΣ, Γ `Π N : S is derivable if and only if M =βη N .

This Singleton Theorem, requires some comments. We proved it referring to
coherence theorems such as the one proved in [14]. It is also related to a Theorem
proved by Statman [8], [9], since we will see that HOIS and finite full models
can be represented one in the other.

Since, with intersection type we can represent graphs of functions, the set
of λ-terms that are interpreted as a certain element in a finite full model are
exactly the λ-terms that verify a certain judgement.

Theorem 4. Given a HOS Σ, a finite model of Σ, M = (Mα, ρ), a finite vari-
able assignment ν over M and an element e of Mα then there is a HOIS over
Σ, Π, a typing environment Γ and a subset S of ∩αΠ such that for every λ-term
M the two following properties are equivalent:

1. [[M]]
M
ν = e

2. Γ `Π M : S

A consequence of the previous theorem is that we can obtain the undecid-
ability result by [6] about the emptiness of intersection type as a corollary of
the undecidability of λ-decidability [7]. The proof of this Theorem and its con-
sequence are investigated in greater details in the second part of this document.

We now prove the converse of the previous theorem, that is, typability prop-
erties in HOIS can be seen as properties of interpretations in finite full models.
The principle of this proof is to interpret intersection types as functions operat-
ing over intersection types.

We define the operator app which maps, for all α and β, 2∩
α→β
Π × 2∩

α
Π to

2∩
β
Π . It is defined by: app(S, T) = {p|∃(Q,α, p) ∈ S.T EQ}
The finite model in which we will interpret intersection types built over Π is

MΠ = ((Mα)α∈IA , ρ) where for α atomic we let Mα be 2ι
−1(α). The definition

of ρ requires an auxiliary function Fα that sends subsets of ∩αΠ to subsets of
Mα and that verifies:

1. for α atomic and S included in ∩αΠ we let Fα(S) = {T ⊆ ∩αΠ |S ⊆ T},
2. for S included in ∩α→βΠ we let

Fα→β(S) = {h ∈Mα→β |∀T ⊆ ∩αΠ .∀g ∈ Fα(T).h(g) ∈ Fβ(app(S, T))}

It is easy to verify that for every S included in ∩αΠ , the set Fα(S) is not empty.
We choose ρ(c) as an element of Fτ(c)(χ(c)). We then have the following theorem.

Theorem 5. Given a HOS Σ, a HOIS Π over Σ, Γ and S a subset of ∩αΠ , we
set ν(xα) to be an element of Fα(Γ (xα)), then the two following properties are
equivalent:

1. Γ `Π M : S
2. [[M]]

MΠ
ν belongs to Fα(S)

The Theorems 4 and 5 relate finite models and typability in HOIS. This leads
us to the definition of a generalized notion of automaton, typing-automata.

Definition 2. A typing-automaton, A, over a HOS Σ is a tuple (α,Π, Γ, {S1; . . . Sn})
where: α ∈ TΣ, Π is a HOIS over Σ, Γ is a Π-typing environment, for all i in
{1; . . . ;n}, Si is a subset of ∩αΠ . The language defined by A is

L(A) = {M |∃i ∈ N. Γ `Π M : Si}

Using Theorems 4 and 5 we get:

Theorem 6. A language of λ-terms L is recognizable if and only if there is a
typing-automaton A such that L = L(A).

5 Closure properties

5.1 Boolean closure

In this section we shall quickly outline how to construct of typing-automata for
the boolean closure properties of recognizable sets of λ-terms. Interestingly these
constructions can be seen as generalizations of the usual constructions that are
used for tree/string-automata. For example, concerning the intersection of two
recognizable languages, we can construct the product of two typing-automata.
We first start by defining the product of two HOIS.

Definition 3. Given Π1 = (Σ, I1, ι1, χ1) and Π2 = (Σ, I2, ι2, χ2) we define the
HOIS Π1 ⊗Π2 to be (Σ, I, ι, χ) where:

1. I is a subset of I1 × I2 which is equal to {(p1, p2)|ι1(p1) = ι2(p2)},
2. ι((p1, p2)) = ι1(p1), note that by definition of I, ι((p1, p2)) = ι2(p2),
3. χ(c) = {p1 ⊗ p2|p1 ∈ χ1(c) and p2 ∈ χ2(c)}.

where given p1 in ∩αΠ1
and p2 in ∩αΠ2

we define p1 ⊗ p2 by:

1. if α is atomic then p1 ⊗ p2 = (p1, p2)
2. if α = α1 → α2 then p1 = (S1, α1, q1) and p2 = (S2, α2, q2) and p1 ⊗ p2 =

(S1 ⊗ S2, α1, q1 ⊗ q2) where S1 ⊗ S2 = {r1 ⊗ r2|r1 ∈ S1 and r2 ∈ S2}

If we define the product of two typing environment Γ and ∆ to be Γ ⊗ ∆
such that Γ ⊗∆(x) = Γ (x)⊗∆(x), we can prove the following property:

Theorem 7. The judgements Γ `Π1 M : P and ∆ `Π2 M : Q are derivable if
and only if the judgement Γ ⊗∆ `Π1⊗Π2

M : P ⊗Q is derivable.

This allows us to define the product A⊗ B of two typing-automata A and B.

Definition 4. Given two typing-automata over some HOS Σ, A = (α,Π1, Γ, T1)
and B = (α,Π2, ∆, T2), we let A⊗B be (α,Π1⊗Π2, Γ⊗∆,T1⊗T2) where T1⊗T2
is the set {S1 ⊗ S2|S1 ∈ T1 and S2 ∈ T2}.

Theorem 8. Given two typing automata of the same type over some HOS Σ,
A and B we have L(A⊗ B) = L(A) ∩ L(B).

The closure under complement of the class of recognizable sets of λ-terms,
is a direct consequence of its definition in terms of finite models. Interestingly,
if one wishes to construct the typing-automaton recognizing the complementary
language of a given typing-automaton, then one would use the construction that
serves in Theorem 5 which on a tree or string automaton would corresponds
to determinization. This induces a notion of deterministic typing-automata that
grasps the notion of recognizability, and corresponding to the fact that intersec-
tion types correspond to partial function over the finite model generated by the
atomic intersection types.

5.2 Homomorphisms

It is well-known that recognizable sets of strings are closed under arbitrary ho-
momorphisms while recognizable sets of trees are closed under linear homomor-
phisms. We will see that recognizable sets of λ-terms are not even closed under
relabeling. This has the consequence, that Monadic Second Order Logic (MSO)
over the structure of normal λ-terms is not grasped by our notion of recogniz-
ability, since relabelings allow to represent set quantification. On the other hand,
alike strings and trees, recognizable sets of λ-terms are closed under arbitrary
inverse homomorphisms.

We now turn to show that recognizable sets of λ-terms are not closed under
relabeling. In order to show this we use the following signature Σ = {∀ : (b →
b) → b,∧ : b → b → b,∨ : b → b → b,¬ : b → b,C : b → b → b,B : b → b → b}.
Since terms built on Σ are usual boolean expressions, we shall use the standard
notation for those expressions instead of the λ-term notation. Thus we shall
write ∀x.t, t1 ∧ t2 and t1 ∨ t2 instead of ∀(λx.t), ∧t1 t2 and ∨t1 t2. The terms
built on Σ are interpreted in a finite model B = ((Bα)α∈TΣ , ρ) where Bb = {0; 1}
and ρ interprets the usual boolean connectives and quantifiers (∧, ∨, ¬ and ∀)
with their usual truth tables and ρ interprets the connectives C and B as the
functions such that ρ(C)xy = x and ρ(B)xy = y. By definition the set T of
closed terms whose semantic interpretation in B is 1 is recognizable.

We use a relabeling H which maps the terms built on Σ to terms built on
Σ′ = {∀ : (b→ b)→ b,∧ : b→ b→ b,∨ : b→ b→ b,¬ : b→ b, ./: b→ b→ b} so
the constants ∀, ∧, ∨ and ¬ are mapped to themselves by H and C and B are
both mapped to ./.

We let ⇔ be the λ-term λxy.(x∧ y)∨ (¬x∧¬y); as for the other connective,
we adopt an infix notation, i.e. we shall write t1 ⇔ t2 instead of ⇔ t1 t2.

As the connective C (resp. B) takes the value of its left (resp. right) argument,
if f and g are terms whose free variables are x1, . . . , xn, then we have the follow-
ing identities [[∀x1. . . .∀xn.(Cf g)⇔ f]]

B
= 1 and [[∀x1. . . .∀xn.(Bf g)⇔ g]]

B
=

1.
The closed term λxb1 . . . x

b
n.t built on Σ can be interpreted as a function

from {0; 1}n to {0; 1} (modulo curryfication) in B, i.e. an n-ary boolean func-
tion. For a given n there are 2n+1 such functions and we know that for each
such function f we can build, using only ∧, ∨ and ¬, a term f̃ such that

[[λx1 . . . xn.f̃]]
B

= f . Given F = {f1; . . . ; fp} a set of such functions, we write

[F] the term ./ f̃1(./ f̃2(. . . (./ f̃p−1f̃p) . . .)). Remark that for all i in {1; . . . ; p},
there is Hi such that H(Hi) = [F] and [[∀(x1. . . .∀(xn.Hi ⇔ f̃i) . . .)]]

B
= 1 and

thus ∀(x1. . . .∀(xn.[F] ⇔ f̃i) is in H(T). Furthermore for every H such that

H(H) = F there is i in {1; . . . ; p} such that [[∀(x1. . . .∀(xn.H ⇔ f̃i) . . .)]]
B

= 1.
If we suppose that H(T) is recognizable, then there is a finite model M =
((Mα)α∈TΣ , ρ) and a subset N ofMb such that the closed terms M are in H(T)

if and only if [[M]]
M ∈ N ; we assume that Mb contains q elements. Each closed

term λxb1 . . . x
b
n.M built on Σ′ is interpreted in M as a function from {1; . . . ; q}n

to {1; . . . ; q} (modulo curryfication). We are going to show that for every sets

of n-ary boolean functions F and G, it is necessary that [[λxb1 . . . x
b
n.[F]]]

M
and

[[λxb1 . . . x
b
n.[G]]]

M
are different when F and G are different. Indeed, if F and G

are different, we can assume without loss of generality that F is not empty,
and then there is a boolean function f which is in F and which is not in G.

Since there is H such that H(H) = [F] and [[∀x1. . . .∀xn.H ⇔ f̃]]
B

= 1, then

∀x1. . . .∀xn.[F] ⇔ f̃ is in H(T). But for an n-ary boolean g, there is an H ′

such that H(H ′) = [G] and [[∀x1. . . .∀xn.H ′ ⇔ g̃]]
B

= 1 iff g is in G. Thus the

term ∀x1. . . .∀xn.[G]⇔ f̃ is not in H(T) and [[λxb1 . . . x
b
n.[F]]]

M
is different from

[[λxb1 . . . x
b
n.[G]]]

M
. But there are 22

n+1

sets of n-ary boolean functions while there
are qn+1 functions from {1; . . . ; q}n to {1; . . . ; q} and thus for n sufficiently big,

it is not possible to verify that [[λxb1 . . . x
b
n.[F]]]

M
and [[λxb1 . . . x

b
n.[G]]]

M
are dif-

ferent when F and G are different. Therefore, H(T) is not a recognizable set.
This implies that the class of recognizable sets of λ-terms is not closed under
relabeling.

While there seems to be no interesting class of homomorphisms under which
our notion of recognizability is closed, we can show that recognizable sets of
λ-terms are closed under inverse homomorphism.

Theorem 9. Given Σ1, Σ2 two HOS and H a homomorphism between Σ1 and
Σ2, if R is a recognizable set of Σ2 then H−1(R) ∩ ΛαΣ,V is also recognizable.

Recognizable sets contain only λ-terms of a given type and there is no reason
why H−1(R) is a set containing terms having all the same type. So intersecting
H−1(R) with set set of the form ΛαΣ,V is necessary.

6 Some applications of recognizability

We here quickly review some direct applications of the notion of recognizability
in the simply typed λ-calculus.

6.1 Parsing

Theorem 9 gives a very simple definition of parsing for many formalisms. Indeed
in formalisms, such as Context Free Grammars, Tree Adjoining Grammars, Mul-
tiple Context Free Grammars, Parallel Multiple Context Free Grammars etc. . .
can be seen as the interpretation of trees via homomorphism (see [15]). Thus
these grammars can be seen a 4-tuple (Σ1, Σ2,H, S) where Σ1 is a multi-sorted
tree signature, Σ2 is a string signature, H is a homomorphism from Σ1 to Σ2

and S is the type of the trees that are considered as analyses. Thus if we want to
parse a word w we try to find the set {M ∈ ΛSΣ1

|M is closed and H(M) =βη w}
which is actually H−1({w}). But we know from Theorem 3 that {w} is a rec-
ognizable set and thus parsing amounts to compute the inverse homomorphic
image of a recognizable set. This gives a new proof of the theorem of [16] which
proves that the set of parse trees of a sentence in a context free grammars is a

recognizable set, and it furthermore generalizes the result to a wide family of
formalisms. Moreover, this view on parsing also applies to grammars generat-
ing tree or λ-terms, it also shows that parsing a structure is similar to parsing
recognizable sets. Parsing recognizable sets instead of singleton structures has
the advantage that it allows to parse ambiguous inputs, such as noisy phonetic
transcriptions, or ambiguous tagging of sentences. . .

6.2 Higher order matching

The γ-higher-order matching problem (γ-HOM), with γ ∈ {β;βη}, consists in

solving an equation of the form M
?
=γ N where N is a closed term. A solution of

such an equation is a substitution σ such that M.σ =γ N . Using the extraction
Lemma of [3], and Theorem 3, it is easy to see that the solutions of βη-HOM
form finite unions of cartesian products of recognizable sets. Observing this,
allows us to obtain in an alternative way the relation between λ-definability and
βη-HOM showed in [8]. Furthermore, we can easily obtain the result that βη-
HOM is decidable (see [17]) when the terms in a solution are arity bounded, i.e.
under the constraint that the number of variables that can be free in a subterm
is bounded by some number k. Indeed, because of the subformula property and
the bound on the number of free variables, arity-bounded terms of a given type
can all be represented with finitely many combinators; this means that we can
represent those terms in a tree-HOS Σ and recover them with a homomorphism
H. Thus, the set S of terms that are solution of arity bounded βη-HOM can
be effectively represented as a recognizable set of trees, namely H−1(S) , the
emptiness of recognizable sets of trees being decidable this gives the decidability
of arity bounded βη-HOM. In particular, this leads to the decidability of arity

bounded βη-HOM. Since arity-bounded βη-HOM is more general than 3rd and

4th order βη-HOM [17], this technique sheds some light on the results obtained
by [18] that relate the solutions of these special cases to tree automata. Contrary
to most approach to HOM, the one we use is completely direct, we do not need
to transform the problem within a set of interpolation equations.

β-HOM [19] is undecidable while βη-HOM seems to be decidable [20]. But
there is no satisfying explanation on the difference between β-HOM and βη-
HOM so as to account satisfactorily of that difference. But as we have seen,
intersection types make a discrimination between β-reduction and βη-reduction
with the rule Sub, without which the subject reduction Theorem does not hold
for βη-reduction. Thus intersection types seem to be a good tool to investigate
this problem.

7 Conclusion and future work

We have defined a notion of recognizability for the λ-calculus that naturally ex-
tends recognizability for trees or strings. We have exhibited the closure properties
of this notion and showed how it could be exploited to understand parsing of the

higher order matching problem. Contrary to strings and trees where recogniz-
ability comes with three kinds of characterization, a mechanical one (automata),
an algebraic one and a logical one (Monadic Second Order Logic, MSOL), here
our notion only comes with a mechanical and an algebraic characterization. It
seems difficult to come up with a logical characterization since this notion is
not closed under relabeling. And closure under relabeling is central to represent
quantification in MSOL. As we wish to use this notion of recognizability so as
to describe particular sets of λ-terms, it would be nice to obtain a connection
with some logic. First-order logic would be a first step. A more general ques-
tion would be whether there is a logic that exactly corresponds to this notion of
recognizability.

Another question is to characterize the restrictions under which the emptiness
of recognizable sets is decidable. Theorem 9 gives a positive answer when the
terms are bound to be generated with a finite set of combinators since it reduces
this emptiness problem to the emptiness problem of some recognizable set of
trees. But we do not know whether there are weaker constraints for which this
holds. When we look at the situation for graphs, there is no class of graphs [21]
which can be generated only with infinitely many combinators (this means that
the class of graphs has an infinite treewidth) for which this emptiness problem
is decidable. Thus, this question can be related to the definition of a suitable
notion for normal λ-terms that would be similar to treewidth for graphs.

Finally we hope that the notion of recognizability for λ-terms can be of
interest in the study of trees generated by higher-order programming schemes.
It has been showed that those trees had a decidable MSO theory[22]. It is likely
that intersection types should be more adapted to conduct this proof, and yield
to new techniques.

References

1. de Groote, P.: Towards abstract categorial grammars. In for Computational Lin-
guistic, A., ed.: Proceedings 39th Annual Meeting and 10th Conference of the
European Chapter, Morgan Kaufmann Publishers (2001) 148–155

2. Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. Yale
University Press, New Haven, CT (1974)

3. Salvati, S.: On the membership problem for Non-linear Abstract Categorial Gram-
mars. In Muskens, R., ed.: Proceedings of the Workshop on New Directions in
Type-theoretic Grammars (NDTTG 2007), Dublin, Ireland, Foundation of Logic,
Language and Information (FoLLI) (August 2007) 43–50

4. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65 (1958) 154–170

5. Moortgat, M.: Categorial Investigations: Logical & Linguistic Aspects of the Lam-
bek Calculus. Foris Pubns USA (1988)

6. Urzyczyn, P.: The emptiness problem for intersection types. J. Symb. Log. 64(3)
(1999) 1195–1215

7. Loader, R.: The undecidability of λ-definability. In Anderson, C.A., Zeleny, M.,
eds.: Logic, Meaning and Computation: Essays in memory of Alonzo Church.
Kluwer (2001) 331–342

8. Statman, R.: Completeness, invariance and λ-definability. Journal of Symbolic
Logic 47(1) (1982) 17–26

9. Statman, R., Dowek, G.: On statman’s finite completeness theorem. Technical
Report CMU-CS-92-152, University of Carnegie Mellon (1992)

10. Myhill, J.: Finite automata and the representation of events. Technical Report
WADC TR-57-624, Wright Patterson Air Force Base, Ohio, USA (1957)

11. Nerode, A.: Linear automaton transformations. In: Proceedings of the American
Mathematical Society. Volume 9., American Mathematical Society (1958) 541–544

12. Mezei, J., Wright, J.: Algebraic automata and context-free sets. Informcation and
Control 11 (1967) 3–29

13. Dezani-Ciancaglini, M., Giovannetti, E., de’ Liguoro, U.: Intersection Types,
Lambda-models and Böhm Trees. In: MSJ-Memoir Vol. 2 “Theories of Types
and Proofs”. Volume 2. Mathematical Society of Japan (1998) 45–97

14. Babaev, A.A., Soloviev, S.V.: Coherence theorem for canonical maps in cartesian
closed categories. Journal of Soviet Mathematics 20 (1982)

15. de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial gram-
mars: Representing context-free formalisms. Journal of Logic, Language and In-
formation 13(4) (2005) 421–438

16. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. Journal of Computer and System Sci-
ences 1(4) (December 1967) 317–322

17. Schmidt-Schauß, M.: Decidability of arity-bounded higher-order matching. In:
CADE-19. LNCS 2741, Springer (2003) 488–502

18. Comon, H., Jurski, Y.: Higher-order matching and tree automata. In: CSL. (1997)
157–176

19. Loader, R.: Higher order β matching is undecidable. Logic Journal of the IGPL
11(1) (2003) 51–68

20. Stirling, C.: A game-theoretic approach to deciding higher-order matching. In
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., eds.: ICALP (2). Volume 4052
of Lecture Notes in Computer Science., Springer (2006) 348–359

21. Robertson, N., Seymour, P.D.: Graph minors. v. excluding a planar graph. J.
Comb. Theory, Ser. B 41(1) (1986) 92–114

22. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS, IEEE Computer Society (2006) 81–90

Part II

Correspondence between
finite models and
intersection types

Introduction

Consider the simply typed λ-calculus on simple types T0 with one ground type 0.
Recall that a hereditarily finite full model of simply typed λ-calculus is a col-
lection of sets F = (FA)A∈T0 such that F0 6= ∅ is finite and FA→B = FFAB
(i.e. the set of functions from FA to FB) for all simple types A,B. An element
f ∈ FA is λ-definable whenever, for some closed λ-term M having type A, we
have [M] = f , where [M] denotes the interpretation of M in F . The following
question, raised by Plotkin in [7], is known as the Definability Problem:

DP: “Given an element f of any hereditarily finite full model,
is f λ-definable?”

A natural restriction considered in the literature [5,6] is the following:

DPn: “Given an element f of Fn, is f λ-definable?”

where Fn (for n ≥ 1) denotes the unique (up to isomorphism) full model whose
ground set F0 has n elements. Statman’s conjecture stating that DP is decidable
[9] was refuted by Loader [6], who proved in 1993 (but published in 2001) that
DPn is undecidable for every n > 6. Such a result was then strengthened by
Joly, who showed in [5] that DPn is undecidable for all n > 1.

Theorem 10. 1. (Loader) The Definability Problem is undecidable.

2. (Loader/Joly) DPn is undecidable for every n > 6 (resp. n > 1).

Consider now the λ-calculus endowed with the intersection type system CDV
(Coppo-Dezani-Venneri [4]) based on a countable set A of atomic types. Recall
that an intersection type σ is inhabited if `∧ M : σ for some closed λ-term M .

The Inhabitation Problem for this type theory is formulated as follows:

IHP: “Given an intersection type σ, is σ inhabited?”

We will also be interested in the following restriction of IHP:

IHPn: “Given an intersection type σ with at most n atoms, is σ inhabited?”

In 1999, Urzyczyn [10] proved that IHP is undecidable for suitable intersection
types, called “game types” in [3], and thus for the whole CDV. His idea was to
prove that solving IHP for a game type σ is equivalent to winning a suitable
“tree game” G. An arbitrary number of atoms may be needed since, in the
Turing-reduction, the actual amount of atoms in σ is determined by G.

Theorem 11 (Urzyczyn).

1. The Inhabitation Problem is undecidable.

2. The Inhabitation Problem for game types is undecidable.

The undecidability of DP and that of IHP are major results presented thoroughly
in [3]. In the proof these problems are reduced to well-known undecidable prob-
lems (and eventually to the Halting problem). However, the instruments used to
achieve these results are very different — the proof by Loader proceeds by reduc-
ing DP to the two-letter word rewriting problem, while the proof by Urzyczyn
reduces IHP to the emptiness problem for queue automata (through a series of
reductions). The fact that these proofs are different is not surprising since the
two problems, at first sight, really look unrelated.

Our main contribution is to show that DP and IHP are actually Turing-
equivalent, by providing a perhaps unexpected link between the two problems.
The key ideas behind our constructions are the following. Every intersection
α1∧ · · ·∧αk of atoms can be viewed as a set {α1, . . . , αk}, and every arrow type
σ → τ as a (continuous) step function. Moreover, Urzyczyn’s game types follow
the structure of simple types. Combining these ingredients we build a continu-
ous model S = (SA)A∈T0 over a finite set of atomic types, which constitutes a
“bridge” between intersection type systems and full models of simply typed λ-
calculus. Then, exploiting very natural semantic logical relations, we can study
the continuous model, cross the bridge and infer properties of the full model.
Our constructions allow us to obtain the following Turing-reductions (recall that
if the problem P1 is undecidable and P1 ≤T P2, then also P2 is undecidable):

(i) Inhabitation Problem for game types ≤T Definability Problem,
(ii) Definability Problem ≤T Inhabitation Problem (cf. [8]),

(iii) DPn ≤T IHPn (cf. [8]).

Therefore, by (i) and (ii) we get that the undecidability of DP and IHP follows
from each other. Moreover, by (iii) and Theorem 10(2) we conclude that IHPn
is undecidable whenever n > 1, which is a new result refining Urzyczyn’s one.

8 Preliminaries: Some Syntax, Some Semantics

To make this article more self-contained, this section summarizes some defini-
tions and results that we will use later in the paper. Given a set X, we write
P(X) for the set of all subsets of X, and Y ⊆f X if Y is a finite subset of X.

8.1 Typed Lambda Calculi

We take untyped λ-calculus for granted together with the notions of closed λ-
term, α-conversion, (β-)normal form and strong normalization. We denote by
Var the set of variables and by Λ the set of λ-terms. Hereafter, we consider
λ-terms up to α-conversion and we adopt Barendregt’s variable convention.

We mainly focus on two particular typed λ-calculi (see [3] for more details).

The simply typed λ-calculus à la Curry over a single atomic type 0. The
set T0 of simple types A,B,C, . . . is defined in Figure 1(a). Simple contexts ∆
are partial functions from Var to T0; we write ∆ = x1 : A1, . . . , xn : An for the

Λ : M,N,P ::= x |MN | λx.M, where x ∈ Var
T0 : A,B,C ::= 0 | A→ B
TA∧ : γ, ρ, σ, τ ::= α | σ → τ | σ ∧ τ, where α ∈ A

(a) Sets Λ of λ-terms, T0 of simple types, TA∧ of intersection types over A.

σ ≤ σ (refl) σ ∧ τ ≤ σ (inclL) σ ∧ τ ≤ τ (inclR)

(σ → τ) ∧ (σ → τ ′) ≤ σ → (τ ∧ τ ′) (→∧)

σ ≤ γ γ ≤ τ
σ ≤ τ (trans)

σ ≤ τ σ ≤ τ ′

σ ≤ τ ∧ τ ′
(glb)

σ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′
(→)

(b) Rules defining the subtyping relation ≤ on intersection types TA∧.

x1 : σ1, . . . , xn : σn `∧ xi : σi
(ax)

Γ `∧ M : τ → σ Γ `∧ N : τ

Γ `∧ MN : σ
(→E)

Γ, x : σ `∧ M : τ

Γ `∧ λx.M : σ → τ
(→I)

Γ `∧ M : σ Γ `∧ M : τ

Γ `∧ M : σ ∧ τ (∧I)
Γ `∧ M : σ σ ≤ τ

Γ `∧ M : τ
(≤)

(c) Rules defining the intersection type system CDV.

Fig. 1: Definition of terms, types, subtyping and derivation rules for CDV. The rules
for simply typed λ-calculus are obtained from those in (c) leaving out (∧I) and (≤).

function of domain {x1, . . . , xn} such that ∆(xi) = Ai for i in [1;n]. We write
∆ `M : A if M has type A in ∆, and we say that such an M is simply typable.

The intersection type system CDV over an infinite set A of atomic
types. This system was first introduced by Coppo, Dezani and Venneri [4] to
characterize strongly normalizable λ-terms. The set TA

∧ of intersection types is
given in Figure 1(a) and it is partially ordered by the subtyping relation ≤
defined in Figure 1(b). We denote by ' the equivalence generated by ≤. As
usual, we may write

∧n
i=1 σi → τi for (σ1 → τ1) ∧ · · · ∧ (σn → τn).

Contexts Γ = x1 : τ1, . . . , xn : τn are handled as in the simply typed case. We
write Γ `∧ M : σ if the judgment can be proved using the rules of Figure 1(c).

As a matter of notation, given two sets Y, Z of intersection types, we let Y ∧ =
{σ1 ∧ · · · ∧ σn | σi ∈ Y for i ∈ [1;n]} and Y → Z = {τ → σ | τ ∈ Y, σ ∈ Z}.

We now present some well known properties of CDV. For their proofs, we
refer to [4], [3, Thm. 14.1.7] and [3, Thm. 14.1.9] respectively.

Theorem 12. A λ-term M is typable in CDV iff M is strongly normalizable.

Theorem 13 (β-soundness). For all k ≥ 1, if
∧k
i=1 σi → ρi ≤ γ1 → γ2 then

there is a non-empty subset K ⊆ [1; k] such that γ1 ≤
∧
i∈K σi and

∧
i∈K ρi ≤ γ2.

Theorem 14 (Inversion Lemma). The following properties hold:

1. Γ `∧ x : σ iff Γ (x) ≤ σ,

2. Γ `∧ MN : σ iff there is ρ such that Γ `∧ M : ρ→ σ and Γ `∧ N : ρ,
3. Γ `∧ λx.M : σ iff there is n ≥ 1 such that σ =

∧n
i=1 σi → σ′i for some σi, σ

′
i,

4. Γ `∧ λx.M : σ → τ iff Γ, x : σ `∧ M : τ .

8.2 Type Structures Modelling the Simply Typed Lambda Calculus

A typed applicative structure M is a pair ((MA)A∈T0 , •) where each MA is a
structure whose carrier is non-empty, and • is a function that associates to every
d ∈MA→B and every e ∈MA an element d • e in MB . From now on, we shall
write d ∈ M to denote d ∈ MA for some A. We say that M is: hereditarily
finite if every MA has a finite carrier; extensional whenever, for all A,B ∈ T0

and d, d′ ∈MA→B , we have that d • e = d′ • e for every e ∈MA entails d = d′.
A valuation in M is any map νM from Var to elements of M. A valuation

νM agrees with a simple context ∆ when ∆(x) = A implies νM(x) ∈MA. Given
a valuation νM and an element d ∈ M, we write νM[x := d] for the valuation
ν′M that coincides with νM, except for x, where ν′M takes the value d. When
there is no danger of confusion we may omit the subscript M and write ν.

A valuation model M is an extensional typed applicative structure such
that the clauses below define a total interpretation function [·]M(·) which maps
derivations ∆ `M : A and valuations ν agreeing with ∆ to elements of MA:

– [∆ ` x : A]Mν = ν(x),

– [∆ ` NP : A]Mν = [∆ ` N : B → A]Mν • [∆ ` P : B]Mν ,

– [∆ ` λx.N : A→ B]Mν • d = [∆,x : A ` N : B]Mν[x:=d] for every d ∈MA.

When the derivation (resp. the model) is clear from the context we may simply

write [M]Mν (resp. [M]ν). For M closed, we simplify the notation further and
write [M] since its interpretation is independent from the valuation.

The full model over a set X 6= ∅, denoted by Full(X), is the valuation model
((FA)A∈T0 , •) where • is functional application, F0 = X and FA→B = FFAB .

The continuous model over a cpo (D,≤), written Cont(D,≤), is the val-
uation model ((DA,vA)A∈T0 , •) such that • is functional application and:

– D0 = D and f v0 g iff f ≤ g,
– DA→B = [DA → DB] consisting of the monotone functions from DA to DB

with the pointwise partially ordering vA→B .

We will systematically omit the subscript A in vA when clear from the context.
Note that both Full(X) and Cont(D,≤) are extensional. Moreover, whenever

X (resp. D) is finite Full(X) (resp. Cont(D,≤)) is hereditarily finite.
Logical relations have been extensively used in the study of semantic prop-

erties of λ-calculus (see [2] for a survey). As we will see in Sections 11 and 12
they constitute a powerful tool for relating different valuation models.

Definition 5. Given two valuation models M,N , a logical relation R between
M and N is a family {RA}A∈T0 of binary relations RA ⊆MA ×NA such that
for all A,B ∈ T0, f ∈MA→B and g ∈ NA→B we have:

f RA→B g iff ∀h ∈MA, h
′ ∈ NA[h RA h′ ⇒ f(h) RB g(h′)].

Given f ∈ MA we define RA(f) = {g ∈ NA | f RA g} and, for Y ⊆ MA,
RA(Y) =

⋃
f∈Y RA(f). Similarly, for g ∈ NA and Z ⊆ NA we have R−A (g) =

{f ∈ NA | f RA g} and R−A (Z) =
⋃
g∈Z R−A (g).

It is well known that a logical relation R is univocally determined by the
value of R0, and that the fundamental lemma of logical relations holds [2].

Lemma 1 (Fundamental Lemma). Let R be a logical relation between M
and N then, for all closed M having simple type A, we have [M]M RA [M]N .

9 Uniform Intersection Types and CDVω

A useful approach to prove that a general decision problem is undecidable, is
to identify a “sufficiently difficult” fragment of the problem. For instance, Urzy-
czyn in [10] shows the undecidability of inhabitation for a proper subset G of
intersection types called game types in [3]. Formally, G = A ∪ B ∪ C where:

A = A∧,B = (A → A)∧, C = (D → A)∧ for D = {σ ∧ τ | σ, τ ∈ (B → A)}.

(Recall that the notations Y ∧ and Y → Z were introduced in Subsection 8.1.)
In our case we focus on intersection types that are uniform with simple types,
in the sense that such intersection types follow the structure of the simple types.

Let us fix an arbitrary set X ⊆ A. We write TX∧ for the set of intersection
types based on X.

Definition 6. The set ΞX(A) of intersection types uniform with A ∈ T0 is
defined by induction on A as follows:

ΞX(0) = X∧, ΞX(B → C) = (ΞX(B)→ ΞX(C))∧.

When there is little danger of confusion, we simply write Ξ(A) for ΞX(A).
It turns out that game types are all uniform: A ⊆ ΞA(0), B ⊆ ΞA(0 → 0)

and D ⊆ ΞA((0 → 0) → 0) thus C ⊆ ΞA(((0 → 0) → 0) → 0). Therefore the
inhabitation problem for uniform intersection types over A is undecidable too.

Theorem 15 (Urzyczyn revisited). The problem of deciding whether a type
σ ∈

⋃
A∈T0,X⊆fA ΞX(A) is inhabited in CDV is undecidable.

For technical reasons, that will be clarified in the next section, we need to
introduce the system CDVω over A ∪ {ω}, a variation of CDV where intersection
types are extended by adding a distinguished element ω at ground level.

In this framework, the set ΞX∪{ω}(A) of intersection types with ω uniform
with A will be denoted by ΞωX(A), or just Ξω(A) when X is clear. We write ωA
for the type in Ξω(A) defined by ω0 = ω and ωB→C = ωB → ωC .

The system CDVω over TA∪{ω}
∧ , whose judgments are denoted by Γ `ω∧ M : σ,

is generated by adding the following rule to the definition of ≤ in Figure 1(b):

σ ∈ ΞωA (A)

σ ≤ ωA
(≤A)

Therefore CDVω is different from the usual intersection type systems with ω.
By construction, for every A ∈ T0, the type ωA is a maximal element of Ξω(A).
Using [3, Thm. 14A.7], we easily get that the Inversion Lemma (Theorem 14)
still works for CDVω, while the β-soundness holds in the following restricted
form.

Recall that ' stands for the equivalence generated by ≤.

Theorem 16 (β-soundness for CDVω). Let k ≥ 1. Suppose γ1 → γ2 6' ωA
for all A ∈ T0 and

∧k
i=1 σi → ρi ≤ γ1 → γ2, then there is a non-empty subset

K ⊆ [1; k] such that γ1 ≤
∧
i∈K σi and

∧
i∈K ρi ≤ γ2.

We now provide some useful properties of uniform intersection types.

Lemma 2. Let σ ∈ Ξω(A) and τ ∈ Ξω(A′). Then we have that σ ≤ τ entails
A = A′.

To distinguish arbitrary contexts from contexts containing uniform intersec-
tion types (with or without ω) we introduce some terminology.

We say that a context Γ is a Ξ-context (resp. Ξω-context) if it ranges over
uniform intersection types (resp. with ω). A Ξ-context (resp. Ξω-context) Γ =
x1 : σ1, . . . , xn : σn is uniform with ∆ = x1 : A1, . . . , xn : An if every σi belongs
to Ξ(Ai) (resp. to Ξω(Ai)).

Lemma 3. Let ρ ∈ TA∪{ω}
∧ , τ ∈ Ξω(B) and Γ be a Ξω-context. Then we have

that Γ, x : τ `ω∧ xN1 · · ·Nk : ρ iff there are A,A1, . . . , Ak ∈ T0 and σ ∈ Ξω(A)
and τi ∈ Ξω(Ai) for i in [1; k] such that B = A1 → · · · → Ak → A and:

1. σ ≤ ρ,
2. Γ, x : τ `ω∧ xN1 · · ·Nk : σ,
3. τ ≤ τ1 → · · · → τk → σ,
4. Γ, x : τ `ω∧ Ni : τi for all i in [1; k].

Furthermore, if Γ is a Ξ-context, ρ ∈ TA
∧ and τ ∈ Ξ(B), then σ and the τi for

i in [1; k] may also be chosen as uniform intersection types without ω (while the
type judgments `ω∧ still need to be in CDVω).

Theorem 17 (Uniform Inversion Lemma for CDVω). Let σ ∈ Ξω(A) and
Γ be a Ξω-context. Then we have that (where we suppose that each term in a
type judgment is in normal form):

1. Γ `ω∧ x : σ iff Γ (x) ≤ σ,
2. Γ `ω∧ MN : σ iff there exist B ∈ T0 and τ ∈ Ξω(B) such that Γ `ω∧ M : τ → σ

and Γ `ω∧ N : τ ,
3. Γ `ω∧ λx.N : σ iff A = B → C and there are τi ∈ Ξω(B), τ ′i ∈ Ξω(C) such

that σ =
∧n
i=1 τi → τ ′i and Γ, x : τi `ω∧ N : τ ′i for all i in [1;n].

Corollary 1. For M a normal λ-term, σ ∈ Ξω(A) and Γ a Ξω-context uniform
with ∆, we have that Γ `ω∧ M : σ entails ∆ `M : A.

Proof. A simple consequence of the Uniform Inversion Lemma (with Lemma 2
when M is a variable). ut

The corollary above does not generalize to arbitrary λ-terms as the follow-
ing example illustrates. Let M = λzy.y and N = λx.xx, then we have that
`ω∧ MN : α→ α ∈ Ξω(0 → 0) since `ω∧ N : γ and `ω∧ M : γ → α → α where
γ = (β∧ (β → β))→ β. However N is not simply typable, hence neither is MN .
Note that, while we consider only uniform intersection types, we do not restrict
the intersection type systems so that the type γ still may be used in a deduction.

CDV and CDVω are equivalent on normal forms in the following sense.

Lemma 4. For every normal M ∈ Λ, for every Ξ-context Γ = x1 : τ1, . . . , xn : τn
uniform with ∆ = x1 : A1, . . . , xn : An, and for every σ ∈ Ξ(A) we have:

Γ `∧ M : σ ⇔ Γ `ω∧ M : σ.

Proof. (⇒) Trivial, as CDV is a subsystem of CDVω.
(⇐) We proceed by induction on the structure of M . The cases where M is a

variable or a λ-abstraction can be treated thanks to Theorem 14 for CDVωand
the induction hypothesis. Concerning the case where M = xiN1 · · ·Nk, from the
ω-free version of Lemma 3, we have that Ai = B1 → · · · → Bk → A, there exist
τ1, . . . , τk respectively in Ξ(B1), . . . , Ξ(Bk) such that τi ≤ τ1 → · · · → τk → σ
and Γ `ω∧ Ni : τi for each i in [1; k]. Therefore, by the induction hypothesis, we
have that for every i in [1; k], Γ `∧ Ni : τi which entails that Γ `∧ M : σ. ut

10 The Continuous Model over P(X)

Hereafter we consider fixed an arbitrary set X ⊆f A. We are going to represent
uniform intersection types based on X∪{ω}, as elements of the continuous model
S over P(X), ordered by set-theoretical inclusion.

Let S = {(SA,vA)}A∈T0 = Cont(P(X),⊆). Each SA is a finite join-semilattice
and thus a complete lattice. We denote the join by t and the bottom by ⊥A.

Given f ∈ SA, g ∈ SB we write f 7→ g for the corresponding step function:

(f 7→ g)(h) =

{
g if f vA h,
⊥B otherwise.

For all A we define a function ιA : Ξω(A)→ SA by induction on A as follows.

Definition 7. For α ∈ X and σ, τ ∈ Ξω(0) we let ι0(α) = {α}, ι0(ω) = ⊥0 = ∅,
ι0(σ ∧ τ) = ι0(σ) t ι0(τ). For σ, τ ∈ Ξω(A→ B) we define:

ιA→B(σ → τ) = ιA(σ) 7→ ιB(τ), ιA→B(σ ∧ τ) = ιA→B(σ) t ιA→B(τ).

Remark 1. Given σ ∈ Ξω(A), we have that σ ' ωA entails ιA(σ) = ⊥A.

Thanks to the presence of the maximal element ωA, the correspondence be-
tween Ξω(A) and SA is actually very faithful (in the sense of Corollary 2).

Lemma 5. Let h =
⊔n
i=1 fi 7→ gi, then for every f we have:

(i) h(f) =
⊔
i∈K gi where K = {i ∈ [1;n] | fi v f}.

(ii) h v f iff gi v f(fi) for all 1 ≤ i ≤ n.

Lemma 6. Step functions are generators: ∀f ∈ SA→B, f =
⊔
g∈SA g 7→ f(g).

Proof. Let h =
⊔
g∈SA g 7→ f(g). We need to prove that, for every g ∈ SA, f(g) =

h(g). From Lemma 5(i), we have that h(g) =
⊔
g′vg f(g′). Since f is monotone,

we have that for every g′ v g, f(g′) v f(g) and therefore
⊔
g′vg f(g′) v f(g).

Since obviously f(g) v
⊔
g′vg f(g′), we obtain f(g) =

⊔
g′vg f(g′) = h(g). ut

Lemma 7. For all A ∈ T0, σ, τ ∈ Ξω(A) we have σ ≤ τ iff ιA(τ) v ιA(σ).

Proof. We proceed by induction on A. In case A = 0, the equivalence is clear
since P(X) is the free t-semilattice with bottom over X and Ξω(0)/' is the
free ∧-semilattice with top over X.

In case A = B → C, we have two subcases. Case 1, τ ' ωD for some
D ∈ T0. Then by Lemma 2 we get D = A, by Remark 1 we get ιA(τ) = ⊥A
and the equivalence follows since both σ ≤ τ and ιA(τ) v ιA(σ) hold. Case 2,
σ =

∧n
i=1 σi → σ′i, τ =

∧m
j=1 τj → τ ′j and τ 6' ωD for any D ∈ T0. By Remark 1

we can assume, without loss of generality, that for every j in [1;m] we have
τj → τ ′j 6' ωD for all D ∈ T0. (Indeed for those k such that τk → τ ′k ' ωD one
reasons as in Case 1.) We now prove the equivalence for this case.

(⇒) If σ ≤ τ , then by β-soundness, for every j in [1;m], there is Kj included
in [1;n] such that τj ≤

∧
i∈Kj σi and

∧
i∈Kj σ

′
i ≤ τ ′j . By the induction hypothesis:

(1)
⊔
i∈Kj

ιB(σi) v ιB(τj) (2) ιC(τ ′j) v
⊔
i∈Kj

ιC(σ′i)

We now prove that, for every f ∈ SB , ιA(τ)(f) v ιA(σ)(f). From Lemma 5(i), we
get ιA(τ)(f) =

⊔
j∈J ιC(τ ′j) where J = {j ∈ [1;m] | ιB(τj) v f}. By definition

of J , we have that
⊔
j∈J ιB(τj) v f so, by (1), we obtain

⊔
j∈J,i∈Kj ιB(σi) v f .

Therefore by Lemma 5(i), we get
⊔
j∈J,i∈Kj ιC(σ′i) v ιA(σ)(f) and, using (2),

we obtain ιA(τ)(f) v ιA(σ)(f). As a conclusion we have ιA(τ) v ιA(σ).

(⇐) If ιA(τ) v ιA(σ), then we have in particular ιA(τ)(ιB(τj)) v ιA(σ)(ιB(τj))
for each j ∈ [1,m]. From Lemma 5(i), we have that ιA(τ)(ιB(τj)) =

⊔
i∈Ij ιC(τ ′i)

where Ij = {i ∈ [1;m] | τi ≤ τj}. Since τj ≤ τj we must have j ∈ Ij and there-
fore, we obtain ιC(τ ′j) v ιA(τ)(ιB(τj)). So, again by Lemma 5(i), we have that
ιA(σ)(ιB(τj)) =

⊔
k∈Kj ιC(σ′k) where Kj = {k ∈ [1;n] | τj ≤ σk}. Thus we get

ιC(τ ′j) v
⊔
k∈Kj ιC(σ′k) and hence, by the induction hypothesis,

∧
k∈Kj σ

′
k ≤ τ ′j .

Now, by definition of Kj , we also have τj ≤
∧
k∈Kj σk. As we can find such a Kj

for every j in [1;m], we can finally conclude that σ ≤ τ . ut

Corollary 2. The map ιA is an order-reversing bijection on Ξω(A)/'.

Proof. If τ ≤ σ and σ ≤ τ , then Lemma 7 implies that ιA(τ) = ιA(σ). From this
it ensues that ιA is an order-reversing injection. To prove that it is actually a
bijection, we need to show that ιA is surjective. We proceed by induction on A.
Clearly when A = 0, ιA is surjective. If A = B → C then we get from the
induction hypothesis that ιB and ιC are bijections between Ξω(B)/' and SB ,
and between Ξω(C)/' and SC , respectively. Now, given f in SA, we define
τf ∈ Ξω(A) to be

∧
g∈SB ι

−1
B (g)→ ι−1C (f(g)). But, ιA→B(τf) =

⊔
g∈SB g 7→ f(g)

which is equal to f by Lemma 6. ut
The above results are related to Stone duality for intersection types (cf. [1]).

Proposition 1. Let M be a normal term such that x1 : A1, . . . , xn : An `M : A.
Then for all τi ∈ Ξω(Ai), σ ∈ Ξω(A) the following two sentences are equivalent:

1. x1 : τ1, . . . , xn : τn `ω∧ M : σ,
2. ιA(σ) v [M]Sν , for all valuations ν such that ν(xi) = ιAi(τi).

Proof. Let ∆ = x1 : A1, . . . , xn : An and Γ = x1 : τ1, . . . , xn : τn.
(1 ⇒ 2) We proceed by structural induction on M .

– In case M = xi, then τi ≤ σ and, by Lemma 7, ιAi(σ) v ιAi(τi) = [xi]ν .
– In case M = NP , then, from Theorem 17(2), there are B ∈ T0 and τ ∈
Ξω(B) such that Γ `ω∧ N : τ → σ and Γ `ω∧ P : τ . By induction ιB→A(τ →
σ) v [N]ν and ιB(τ) v [P]ν , thus, ιA(σ) = ιB→A(τ → σ)(ιB(τ)) v
[N]ν(ιB(τ)) and, by monotonicity, [N]ν(ιB(τ)) v [N]ν([P]ν) = [NP]ν .
From this we finally get ιA(σ) v [NP]ν .

– In case M = λx.N , then by Theorem 17(3) we have that A = B → C
and, for all j ∈ [1;n], there are σj ∈ Ξω(B), σ′j ∈ Ξω(C) such that σ =∧n
j=1 σj → σ′j and Γ, x : σj `ω∧ N : σ′j . Thus, by induction hypothesis, we

get ιC(σ′j) v [N]ν[x:=ιB(σj)]
. From Lemma 5(ii) it ensues that ιA(σ) v [M]ν .

(2⇒ 1) It suffices to establish by induction that [M]ν = ιA(σ), for all ν such that
ν(xi) = ιAi(τi), entails Γ `ω∧ M : σ. Indeed, if τ is such that ιA(τ) v [M]ν then
by Lemma 7 and σ ≤ τ we obtain, using the subsumption rule, that Γ `ω∧ M : τ .

– If M = xi, then [xi]ν = ιAi(τi) = ιA(σ) and σ ' τi. Thus Γ `ω∧ xi : σ.
– If M = NP , then there is B such that ∆ ` N : B → A and ∆ ` P : B.

By Corollary 2, there are τ ∈ Ξω(B → A), ρ ∈ Ξω(B) such that [N]ν =
ιB→A(τ) and [P]ν = ιB(ρ). The induction hypothesis implies that Γ `ω∧ N :
τ and Γ `ω∧ P : ρ are derivable. By hypothesis we know that [M]ν = ιA(σ).
From Lemma 5(ii), since ιA(σ) = [M]ν = [N]ν([P]ν) = ιB→A(τ)(ιB(ρ)), we
have ιB(ρ) 7→ ιA(σ) v ιB→A(τ) and thus, by Lemma 7, τ ≤ ρ → σ. Hence
Γ `ω∧ N : ρ→ σ is derivable, which implies that Γ `ω∧ M : σ is derivable.

– If M = λx.N , then A = B → C. By Corollary 2 we can choose, for every
g ∈ SB , σg ∈ Ξω(B) such that ιB(σg) = g and τg ∈ Ξω(C) such that
ιC(τg) = [N]ν[x:=g] = [M]ν(g). By the induction hypothesis, for every g ∈
SB , we have Γ, x : σg `ω∧ N : τg. Therefore, Γ `ω∧ M : σg → τg and Γ `ω∧ M :∧
g∈SB σg → τg. By definition ιA(

∧
g∈SB σg → τg) =

⊔
g∈Sb ιB(σg) 7→ ιC(τg)

=
⊔
g∈Sb g 7→ [M]ν(g) which is equal, by Lemma 6, to [M]ν . ut

11 Inhabitation Reduces to Definability

We now prove that the undecidability of the Definability Problem follows from
the undecidability of the inhabitation problem (for game types) in CDV. A
preliminary version of this result was announced in the invited paper [8].

The proof we present here is obtained by linking via a suitable logical relation
I the continuous model S built in the previous section and F = {FA}A∈T0 =
Full(P(X)), where X ⊆f A. Let I be the logical relation between S and F
generated by taking the identity at ground level (indeed S0 = F0 = P(X)).

Lemma 8. I is a logical retract, i.e. at every level A ∈ T0 we have ∀f1, f2 ∈
SA, IA(f1) ∩IA(f2) 6= ∅ iff f1 = f2. Equivalently, both next statements hold:

(i) for all f ∈ SA there is g ∈ FA such that f IA g,
(ii) for all f, f ′ ∈ SA, g ∈ FA if f IA g and f ′ IA g then f = f ′.

Proof. We prove the main statement by induction on A, then both items follow.
The base case A = 0 is trivial, so we consider the case A = B → C.

(⇒) By definition of IA(f1),IA(f2) we have:

IA(f1) ∩IA(f2) = {h | ∀g ∈ SB ,∀k ∈ IB(g), h(k) ∈ IC(f1(g)) ∩IC(f2(g))}.

Now, IA(f1) ∩ IA(f2) 6= ∅ entails IC(f1(g)) ∩ IC(f2(g)) 6= ∅ for all g ∈ SB .
By induction, this holds when f1(g) = f2(g) for all g ∈ SB , i.e. when f1 = f2.

(⇐) If f1 = f2 then IA(f1) = {h | ∀g ∈ SB ,∀k ∈ IB(g), h(k) ∈ IC(f1(g))}.
To prove IA(f1) 6= ∅, we build a relation h ⊆ FB×FC that is actually functional
and belongs to it. Fix any d ∈ FC and, for every g ∈ SB , an element rg ∈
IC(f1(g)) which exists by induction hypothesis. Define h as the smallest relation
such that (k, rg) ∈ h if k ∈ IB(g), and (k, d) ∈ h if k /∈

⋃
g∈SB IB(g). As, by

induction hypothesis, IB(g1) and IB(g2) are disjoint for all g1 6= g2 then h is
functional. By construction, h ∈ IC(f1(g)). ut

As a consequence we get, for every subset S ⊆ SA, that I −A (IA(S)) = S.
Given f ∈ SA we write f ↑ for its upward closure in SA: {f ′ ∈ SA | f v f ′}.

Proposition 2. Let σ ∈ Ξ(A). For every normal λ-term M having type A we

have `∧ M : σ iff [M]F ∈ IA(ιA(σ)↑).

Proof. We have the following computable chain of equivalences:

`∧ M : σ ⇔ `ω∧ M : σ, by Lemma 4,

⇔ [M]S ∈ ιA(σ)↑, by Proposition 1,

⇔ [M]F ∈ IA(ιA(σ)↑), by Lemma 1 plus Lemma 8. ut

Theorem 18. The undecidability of the Definability Problem follows by a reduc-
tion from the one of the Inhabitation Problem for game types, Theorem 11(2).

Proof. Suppose by contradiction that DP is decidable. We want to decide whether
σ ∈

⋃
A∈T0,X⊆fA ΞX(A) is inhabited in CDV. By Theorem 12 and Corollary 1

we can focus on normal simply typed λ-terms. Now we can take the set Y of all
atoms in σ, compute the simple type A such that σ ∈ ΞY (A), and effectively con-
struct the finite set IA(ιA(σ)↑) ⊆ Full(Y). If DP is decidable, then we can also
decide with finitely many tests whether there is a λ-definable f ∈ IA(ιA(σ)↑).
By Proposition 2 such an f exists if and only if σ is inhabited. This yields a
reduction of IHP for game types (hence for uniform types, Theorem 15) to DP.

ut

12 Definability Reduces to Inhabitation

In this section we prove the converse of Theorem 18, namely that the undecid-
ability of inhabitation follows directly from the undecidability of λ-definability
in the full model F = Full(X) over a fixed set X ⊆f A. The main idea is a simple
embedding of the elements of F into the uniform intersection types.

Also in this proof the continuous model S = Cont(P(X),⊆) will play a key
role. (Remark that the ground set of S is still P(X), while F is now over X.)
We start by defining an injection ϕA : FA → SA by induction on A:

– if A = 0, then ϕA(f) = {f},
– if A = B → C, then ϕA(f) =

⊔
g∈FB ϕB(g) 7→ ϕC(f(g)).

Now, given f in FA we define an intersection type ξf in Ξ(A) as follows:

– if A = 0, then ξf = f ,
– if A = B → C, then ξf =

∧
g∈FB ξg → ξf(g).

Lemma 9. For every f in FA, we have ϕA(f) = ιA(ξf).

We consider the logical relation J between the full model F and the con-
tinuous model S generated by J0 = {(f, F) | f ∈ F ⊆ F0}.

Lemma 10. For every f ∈ FA and g ∈ SA we have f JA g iff ϕA(f) v g.

Proof. By induction on A, the case A = 0 being obvious. Let A = B → C.
(⇒) Suppose f JA g. We want to prove that ϕA(f) v g. That is, for all

h ∈ SB , we have ϕA(f)(h) v g(h). Let h ∈ SB , then by definition of ϕA, we have
ϕA(f)(h) =

⊔
{ϕC(f(k)) | ϕB(k) v h, k ∈ FB}. But ϕB(k) v h implies k JB h

by induction hypothesis, which implies that f(k) JC g(h) since f JA g. Now
using the induction hypothesis for C, we get ϕC(f(k)) v g(h). That is, ϕA(f)(h)
is a supremum of things all of which are below g(h), thus ϕA(f)(h) v g(h).

(⇐) Suppose ϕA(f) v g. Let h ∈ FB and h′ ∈ SB with h JB h′, that is, by
the induction hypothesis, with ϕB(h) v h′. We want to show that f(h) JC g(h′)
or, equivalently, again by the induction hypothesis, that ϕC(f(h)) v g(h′). Now,
by definition, ϕA(f)(h′) =

⊔
{ϕC(f(k)) | ϕB(k) v h′, k ∈ FB}, and by assump-

tion h ∈ FB and ϕB(h) v h′, so ϕC(f(h)) v ϕA(f)(h′). On the other hand,
ϕA(f) v g as functions on SA and h′ ∈ SB , so ϕA(f)(h′) v g(h′). By transitiv-
ity of the order we obtain ϕC(f(h)) v g(h′) as required. ut

Proposition 3. Given f in FA, we have [M]F = f iff `∧ M : ξf .

Proof. We have the following computable chain of equivalences:

[M]F = f ⇔ f JA [M]S , by Lemma 1,

⇔ ϕ(f) v [M]S , by Lemma 10,

⇔ ιA(ξf) v [M]S , by Lemma 9,
⇔ `∧ M : ξf , by Proposition 1. ut

Therefore f is definable iff ξf is inhabited. This yields a reduction of the
Definability Problem (resp. DPn) to the Inhabitation Problem (resp. IHPn).

Theorem 19. 1. The undecidability of IHPn for all n > 1 follows by a reduc-
tion from the undecidability of DPn for all n > 1, Theorem 10(2).

2. The undecidability of the Inhabitation Problem follows by a reduction from
the undecidability of the Definability Problem, Theorem 10(1).

References

1. S. Abramsky. Domain theory in logical form. In Symposium on Logic and Computer
Science (LICS’87), IEEE Computer Science Press, pp. 47-53, 1987.

2. R. Amadio and P.-L. Curien. Domains and lambda-calculi. Cambridge Tracts in
Theoretical Computer Science, no. 46, Cambridge University Press, 1998.

3. H.P. Barendregt, W. Dekkers and R. Statman. Lambda calculus with types. To ap-
pear. Draft available at http://www.cs.ru.nl/∼henk/book.pdf.

4. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable
terms. Mathematical Logic Quarterly, Volume 27, Issue 2-6, pages 45-58, 1981.

5. T. Joly. Encoding of the halting problem into the monster type & applications. Typed
Lambda Calculi and Applications (TLCA’03), LNCS, vol. 2701, pp. 153-166, 2003.

6. R. Loader. The undecidability of lambda definability. In Logic, Meaning and Com-
putation: Essays in Memory of Alonzo Church, 331-342, 2001.

7. G. Plotkin. Lambda definability and logical relations. Memorandum SAI-RM-4,
School of Artificial Intelligence, University of Edinburgh, 1973.

8. S. Salvati. Recognizability in the simply typed lambda-calculus. Logic, Language,
Information and Computation (WoLLIC’09), LNCS, vol. 5514, pp. 48-60, 2009.

9. R. Statman. Completeness, invariance and λ-definability. The Journal of Symbolic
Logic, vol. 47, no. 1, pp. 17-26, 1982.

10. P. Urzyczyn. The emptiness problem for intersection types. The Journal of Sym-
bolic Logic, vol. 64, no. 3, pp. 1195-1215, 1999.

	FREC delivrable 4: Recognizability for -terms
	
	I Recognizability in the -calculus
	II Correspondence between finite models and intersection types

