Le monoïde Markovien

Hugo Gimbert CNRS, LaBRI, Bordeaux.

Réunion FREC, Mai 2011

Joint work with Nathanaël Fijalkow (ENS Cachan) and Youssouf Oualhadj (LaBRI) Automates probabilistes

Monoïde Markovien

Problème de la valeur 1

Leung - Simon, algebraic techniques for distance automata.

Automates probabilistes sur les mots finis (Rabin 63)



Le mot aab est accepté avec probabilité $\frac{3}{8}$.

$$= \begin{vmatrix} 1 & 0 & 0 & 0 \end{vmatrix} \cdot \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 0 & 0 & 0 & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Automates probabilistes sur les mots finis

Rabin (63): langage d'un automate probabiliste.

Pour $0 \le \lambda \le 1$, le langage $\mathcal{L}_{\lambda}(\mathcal{A})$ d'un automate probabiliste \mathcal{A} est l'ensemble de mots acceptés avec probabilité supérieure à λ .

Automates probabilistes sur les mots finis

Rabin (63): langage d'un automate probabiliste.

Pour $0 \le \lambda \le 1$, le langage $\mathcal{L}_{\lambda}(\mathcal{A})$ d'un automate probabiliste \mathcal{A} est l'ensemble de mots acceptés avec probabilité supérieure à λ .

Paz (71): pour tout $0 < \lambda < 1$, le problème du vide est indécidable.

Lien avec les automates non-déterministes?

Reformulation du résultat de Paz

Paz (71): le problème du vide est indécidable pour $\lambda = \frac{1}{2}$.

Corollaire: étant donné un automate non-déterministe, on ne peut pas décider si il existe un mot tel que au moins la moitié des calculs sur ce mot sont acceptants.

Problème du vide

Pour $\lambda = 0$ le problème (strict) du vide est décidable.

Problème du vide

Pour $\lambda = 0$ le problème (strict) du vide est décidable.

Pour $\lambda = 1$ le problème du vide est décidable.

Points de coupure isolés

Rabin (63): si le point de coupure λ est isolé:

$$\exists \epsilon > 0, \forall u \in A^*, |\mathbb{P}(u) - \lambda| \geq \epsilon$$
,

alors le langage $\mathcal{L}_{\lambda}(\mathcal{A})$ est rationnel.

Points de coupure isolés

Rabin (63): si le point de coupure λ est isolé:

$$\exists \epsilon > 0, \forall u \in A^*, |\mathbb{P}(u) - \lambda| \geq \epsilon$$
,

alors le langage $\mathcal{L}_{\lambda}(\mathcal{A})$ est rationnel.

Bertoni (75): pour $0 < \lambda < 1$, le problème de l'isolation est indécidable.

Points de coupure isolés

Rabin (63): si le point de coupure λ est isolé:

$$\exists \epsilon > 0, \forall u \in A^*, |\mathbb{P}(u) - \lambda| \geq \epsilon$$
,

alors le langage $\mathcal{L}_{\lambda}(\mathcal{A})$ est rationnel.

Bertoni (75): pour $0 < \lambda < 1$, le problème de l'isolation est indécidable.

Cas ouvert: $\lambda = 1$.

1 n'est *pas* isolé

⇒ l'automate a valeur 1.

Le problème de la valeur 1

Problème de la valeur 1. Etant donné un automate ${\cal A}$ est-ce que:

$$\sup_{u \in A^*} \mathbb{P}(u) = 1 ?$$

Procédure de décision (en temps infini):

1. Calculer l'ensemble des produits de matrices de transition

$$\mathcal{M} = \{M_a \mid a \in A\}^* \subseteq [0,1]^{Q \times Q}$$
.

- 2. Calculer $\bar{\mathcal{M}}$ la fermeture topologique de \mathcal{M} .
- 3. L'automate a valeur 1 ssi $\bar{\mathcal{M}}$ contient une matrice M telle que:

$${q \in Q \mid M(i,q) > 0} \subseteq F$$
,

où i est l'état initial et F l'ensemble des états finaux.

Un algorithme pour décider le problème de la valeur 1

Nécessité: abstraire le calcul de \bar{M} .

Abstraction "binaire" des probas: $(\{0,1\}, \vee, \wedge)$,

Abstraction des limites de produits de matrices de transition. Graphes dirigés $G \in \{0,1\}^{Q \times Q}$ muni:

- 1. du produit de composition $G \cdot H$,
- 2. d'une opération d'itération G^{\sharp} pour les idempotents.

Un algorithme pour décider le problème de la valeur 1

On calcule le monoide Markovien $\mathcal G$ associé à un automate $\mathcal A$. Monoïde de stabilisation $(\mathcal G,\cdot,\sharp)$ contenant des graphes dirigés $\mathcal G\in\{0,1\}^{Q\times Q}$.

Deux propriétés.

▶ Consistence. $\forall G \in \mathcal{G}, \exists (u_n)_{n \in \mathbb{N}}$:

$$(s,t) \in G \iff \liminf_n u_n(s,t) > 0$$
,

▶ Complétude. $\forall (u_n)_{n \in \mathbb{N}}, \exists G \in \mathcal{G}$:

$$(s,t) \in G \iff \liminf_{n} u_n(s,t) = 0 \implies (s,t) \in G$$
.

Témoin de valeur 1: graphe G tel que:

$$\{q \in Q \mid (i,q) \in G\} \subseteq F$$
,

Lemme: Supposons le monoïde Markovien consistent et complet. Alors \mathcal{A} a valeur 1 si et seulement si son monoïde Markovien contient un témoin de valeur 1.

Le monoïde Markovien

Abstraction des matrices de transition: pour tout $a \in A$ on note $G_a \in \{0,1\}^{Q \times Q}$ défini par:

$$(s,t) \in G_a \iff M_a(s,t) > 0$$
.

Monoïde Markovien: plus petit monoïde contenant $\{G_a \mid a \in A\}$ et stable par produit \cdot et itération \sharp .

Le monoïde Markovien

Abstraction des matrices de transition: pour tout $a \in A$ on note $G_a \in \{0,1\}^{Q \times Q}$ défini par:

$$(s,t) \in G_a \iff M_a(s,t) > 0$$
.

Monoïde Markovien: plus petit monoïde contenant $\{G_a \mid a \in A\}$ et stable par produit \cdot et itération \sharp .

Produit de matrices à coefficients dans $(\{0,1\},\vee,\wedge)$.

$$(s,t) \in G \cdot H \iff \exists q \in Q, (s,q) \in G \land (q,t) \in H$$
.

Itération?

L'opération d'itération

Etat récurrent: Soit $G \in \{0,1\}^{Q \times Q}$. Un état q est G-récurrent si $\forall r \in Q$,

r est G-accessible à partir de q $\implies q$ est G-accessible à partir de r.

Remarque: Si G est idempotent alors q est G-récurrent ssi:

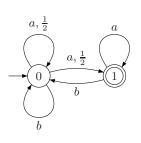
$$\forall r \in Q, (q,r) \in G \Longrightarrow (r,q) \in G$$
.

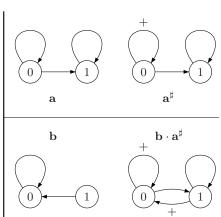
Opération d'itération: soit G idempotent.

$$(q,r) \in G^{\sharp} \iff (q,r) \in G \land r \text{ est } G\text{-r\'ecurrent.}$$

Un exemple

En oubliant les +:





The limitedness problem for distance automata

Hashigushi 82, 90. Limitedness theorems.

Distance automata: meilleur calcul $(\mathbb{N}, \min, +)$. Probabilistic automata: calculs parallèles $(\mathbb{R}, +, *)$.

Approche algébrique.

Simon et Leung. On semigroups of matrices over the tropical semiring.

Automate à distance: le minimum de deux petites distances est petit.

Automate probabiliste: la somme de deux petites probabilités n'est pas forcément petite.

Indécidabilité

Théorème [G., Oualhadj, 09]: le problème de la valeur 1 est indécidable.

Preuve: construction ad-hoc. Technique de [Baier, Bertrand, Groesser, 08]. Réduction à partir du problème du vide.

Indécidabilité

Théorème [G., Oualhadj, 09]: le problème de la valeur 1 est indécidable.

Preuve: construction ad-hoc. Technique de [Baier, Bertrand, Groesser, 08]. Réduction à partir du problème du vide.

Corollaire: on ne peut pas décider si, étant donné un automate non-déterministe, il existe des mots dont la proportion des calculs acceptant est arbitrairement proche de 1.

Décidabilité pour les automates étanches

Lemme: Si le monoïde Markovien d'un automate \mathcal{A} contient un témoin de valeur 1 alors \mathcal{A} a valeur 1.

Théorème: [Fijalkow, G., Oualhadj 11] si l'automate \mathcal{A} est étanche alors la réciproque du lemme précédent est vraie.

Corollaire: le problème de la valeur 1 est décidable pour les automates probabilistes étanches.

Décidabilité pour les automates étanches

Une fuite d'un état $r \in Q$ à un état $q \in Q$ est une suite $(u_n)_{n \in \mathbb{N}}$ de mots idempotents tels que:

- 1. pour tout état $s,t\in Q$, la suite $(u_n(s,t))_{n\in\mathbb{N}}$ converge vers une valeur u(s,t). On dénote \mathcal{M}_u la chaîne de Markov avec états Q et probabilités de transition $(u(s,t))_{s,t\in Q}$,
- 2. l'état r est récurrent dans \mathcal{M}_u ,
- 3. $\forall n \in \mathbb{N}, u_n(r,q) > 0$,
- 4. et r n'est pas accessible depuis q dans \mathcal{M}_u .

Définition: un automate est étanche si il est sans fuite.

Remarque: on peut décider si un automate est étanche ou non.

Décidabilité pour les automates étanches

Proposition: [Fijalkow, G., Oualhadj 11] si le monoïde Markovien d'un automate $\mathcal A$ ne contient pas de témoin de valeur 1 et si $\mathcal A$ est étanche alors $\mathcal A$ a valeur inférieure à $1-p^{3\cdot 2^{4|Q|^2}}$, où p est la probabilité de transition minimale non-nulle.

Preuve:

adaptation de la preuve algébrique de Imre Simon pour les automates à distance.

Forêt de factorisation.

Un idempotent instable $G \neq G^{\sharp}$ correspond à une décroissance stricte dans l'ordre $\leq_{\mathcal{T}}$.

Conclusion

Le monoïde Markovien permet d'abstraire l'ensemble des calculs d'un automate probabiliste.

Les automates étanches: une classe d'automates probabilistes dont la valeur est calculable.

Automates probabilistes = jeux à un joueur et demi sans observation.

Extension aux jeux avec observation partielle.