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Given a finite set of atomic typesA, simple types are:

TA := A|(TA → TA)

ord(α) = 1 and ord(α→ β) = max(ord(α) + 1, ord(β))
A higher order signature is a tuple Σ = (A,C, τ) where:

◮ A is a finite set of atomic types,

◮ C is a finite set of constants,

◮ τ is a function from C to TA.

λ-terms built on Σ are defined as:

◮ for α ∈ TA, xα ∈ Λα
Σ

,

◮ c ∈ Λτ(c)
Σ

,

◮ if M1 ∈ Λ
α2⊸α1
Σ

, M2 ∈ Λ
α2
Σ

, then (M1M2) ∈ Λ
α1
Σ

,

◮ if M ∈ Λα1
Σ

, then λxα2 .M ∈ Λα2→α1
Σ

.
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Using λ-terms to represent logical formulae

We use two types:

◮ e, the type for entities,

◮ t , the type for truth values.

We represent logical connectives as constants:

◮ ∧,∨ : t → t → t , ¬ : t → t

◮ ∀ : (e → t)→ t , ∃ : (e → t)→ t

◮ love : e → e → t ,woman : e → t , man : e → t , mary : e ,
john : e. . .

∀(λxe .∃(λye . ∧ (man xe)(∧(woman ye)(love xe ye)))

≈

∀x .∃y .man(x) ∧ woman(y) ∧ love(x , y)



Operational semantics:β-reduction
λ-calculus is a theory of function and computation.
Computation is done with the relation of β-contraction (→β):

(λx.M)N

(λx.M)N →β M[x := N]

M1 →β M2

(MM1)→β (MM2)

M1 →β M2

(M1M) →β (M2M)

M1 →β M2

(λx.M1)→β (λx.M2)

β-reduction (
∗
→β): reflexive transitive closure of β-contraction

Theorem (Church-Rosser)

M

M1 M2

N

∗

∗
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Operational semantics:η-reduction

Mathematicians do not make a difference between the function sin and the
function f : x → sin(x).
η-contraction is used to reflect this fact in the λ-calculus.

(λx.Mx) x < FV(M)

M

M1 →η M2

(MM1)→η (MM2)

M1 →η M2

(M1M)→η (M2M)

M1 →β M2

(λx.M1)→η (λx.M2)

η-reduction (
∗
→η): reflexive transitive closure of→η

βη-reduction (
∗
→βη):

∗
→β ∪

∗
→η

βη-conversion (=βη): commutative closure of→βη
Church-Rosser Theorem holds for all those relations
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Strong normalisation

Theorem (strong normalisation)
If M is a simply typed term, then there is no infinite chains of term
in relations of βη-contraction starting in M.

◮ No matter how a term is reduced, it will always output a result,
and the same result.
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Simply typed λ-calculus generalizes trees

The ranked alphabet {e; g; f } where rank(e) = 0, rank(g) = 1,
rank(f) = 2 can be represented by the following second order
constants:

e : o, g : o → o, f : o → o → o

the term g(f(e, g(e))) is represented by the λ-term g(f e (g e))
The Böhm tree of the λ-term is the same as the graphic
representation of the term:

g

f

e g

e
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a : o → o, b : o → o

Strings are represented by terms of type o → o:

the string aba is represented by /aba/ = λxo .a(b(a xo))



Simply typed λ-calculus generalizes strings

The elements of {a; b}∗ can be represented with the constants:

a : o → o, b : o → o

Strings are represented by terms of type o → o:

the string aba is represented by /aba/ = λxo .a(b(a xo))

Concatenation is then s1 + s2 = λxo .s1(s2(xo)):

/ab/+ /bb/ = λxo .a(b(xo)) + λxo .b(b(xo))

= λxo .(λyo .a(b yo))((λzo .b(b zo))xo)

=βη λx
o .a(b(b(b zo)))

and the empty string is λxo .xo
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◮ tree generated by a ranked alphabet: free algebra

◮ string generated by an alphabet: free monoid

◮ λ-terms of a given type generated by a higher order signature
are also freely generated

Languages of λ-terms:

◮ Abstract Categorial Grammars

◮ Sets of semantic representations in Montague semantics

◮ Solutions of higher-order matching equations

◮ Finer grained languages than those obtained in substructural
logic may be necessary in linguistics for: traces, extractions,
ellipsis. . .



Recognizability

◮ For strings and trees, it corresponds to one of the simplest
classes of languages,

◮ It naturally has several characterisation:
◮ finite state automaton,
◮ regular expressions,
◮ finite congruences (Myhill-Nerode),
◮ logic (W1S, WkS) (Büchi, Thatcher and Right, Döner),

◮ It is used in formal language theory to study classes of
languages (AFL, Greibach),

◮ It is used, via MSO, for model checking.
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classes of languages,

◮ It naturally has several characterisation:
◮ finite state automaton,
◮ regular expressions,
◮ finite congruences (Myhill-Nerode),
◮ logic (W1S, WkS) (Büchi, Thatcher and Right, Döner),

◮ It is used in formal language theory to study classes of
languages (AFL, Greibach),

◮ It is used, via MSO, for model checking.

We here present a generalization of recognizability for trees and
strings to the simply typed λ-calculus.
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◮ Each letter, a or b, can be interpreted as a function fa , fb , from
states to states such that fα(q) = q′ iff (q, α, q′) is a transition.

◮ A word α1 . . . αn is in the language iff
hα1 ◦ . . . ◦ hαn(q0) ∈ {q1; q3}.
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Let’s consider the deterministic tree automataA with the states
q0, q1, q2 whose final states are {q0; q1} and the rules:

f(qi , qj) −→ q0 f(q, q′) −→ ⊥ when q = ⊥ or q′ = ⊥
g(q0) −→ q1 g(q2) −→ ⊥
g(q1) −→ q2 g(⊥) −→ ⊥
a −→ q0

Then the automaton is computing the operations in the finite
algebra A, {q0; q1; q2;⊥} where f(qi , qj) =A q0, f(q, q′) =A ⊥ when
q = ⊥ or q′ = ⊥. . . and

L(A) = {t | t =A q0 ∨ t =A q1}

More generally this relation is formalized by Myhill-Nerode
Theorem or in [Mezei, Wright 67].
Finite algebras and finite semi-groups are particular cases of finite
models of the simply typed λ-calculus.
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Finite models for recognizability in the simply typed
λ-calculus

Let Σ be a signature. M = ((Mα)α∈T (Σ), ι) is a finite model of Σ if:

◮ The setsMα are finite and pairwise disjoint.

◮ Mα→β is the set of all functions fromMα toMβ.

◮ ι maps constants of type α toMα

A variable assignment χ : V →
⋃
α∈T (Σ)M

α so that χ(xα) ∈ Mα.
The semantics of λ-terms inM is inductively defined by:

◮ [[c]]Mχ = ι(c),

◮ [[xα]]Mχ = χ(xα),

◮ [[MN]]Mχ = [[M]]Mχ ([[N]]Mχ ),

◮ [[λxα.M]]Mχ = a ∈ Mα → [[M]]M
χ←[xα:=a]



Finite models for recognizability in the simply typed
λ-calculus

Definition:
A set of λ-terms S ⊆ Λα

Σ
is recognizable iff there is a finite set of

variables W , a finite full modelM = ((Mα)α∈T (Σ), ι) , N ⊆ Mα and
a variable assignment χ such that:
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Finite models for recognizability in the simply typed
λ-calculus

Definition:
A set of λ-terms S ⊆ Λα

Σ
is recognizable iff there is a finite set of

variables W , a finite full modelM = ((Mα)α∈T (Σ), ι) , N ⊆ Mα and
a variable assignment χ such that:

S = {M|FV(M) ⊆ W ∧ [[M]]Mχ ∈ N}

S

N

Λα
Σ Mα

[[·]]

Note:
◮ recognizable sets are closed under =βη
◮ the emptiness of recognizable sets subsumes λ-definability

which is undecidable (Loader 1993).
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We use the signature with the constants: ∧ : p → p → p, ∨ : p →
p → p, ¬ : p → p, ∀2 : (p → p)→ p, ∃2 : (p → p)→ p
Then the QBF formula ∀2x .x ∨ ¬x is represented as:

∀2(λxp . ∨ xp (¬xp)

We take the model B = ((Bα)α∈T (Σ), ι) such that:

◮ Bp = {0, 1},

◮ ∧, ∨, ¬ are interpreted as usual by ι

◮ ι(∀2)(f) is equal to 1 iff f(1) = f(0) = 1,

◮ ι(∃2)(f) is equal to 1 iff f(0) = 1 or f(1) = 1

If M represents the QBF formula F , then [[M]]B
∅
= 1 iff F is a

tautology.
Thus the set of closed terms that represent QBF tautologies is
recognizable.
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It is as if a should have at the same time the type
q1
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Intersection types

There is a type system, intersection types (Coppo, Dezani 1980),
that assignes several types to λ-terms:

◮ it is used to type the untyped λ-caculus and grasp dynamic
properties of terms via typing (strong/weak normalization,
solvability. . . ),

◮ it is used to build models of the λ-calculi,

◮ typing judgements are closed under =βη.



Intersection types a brief introduction

In the untyped λ-calculus, intersection type systems are of the
form:

Γ, x : A ⊢ x : A Γ ⊢ M : Ω

Γ ⊢ M : A Γ ⊢ M : B

Γ ⊢ M : A ∩ B

Γ ⊢ M : A1 ∩ A2 i ∈ {1; 2}

Γ ⊢ M : Ai

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Γ, x : A ⊢ M : B

Γ ⊢ λx .M : A → B

Let S(Γ,A) = {M|Γ ⊢ M : A }, one can easily see that:

◮ S(Γ,A ∩ A) = S(Γ,A) and
S(Γ,Ω ∩ A) = S(Γ,A ∩ Ω) = S(Γ,A),

◮ S(Γ,A ∩ B) = S(Γ,B ∩ A) and
S(Γ, (A ∩ (B ∩ C))) = S(Γ, ((A ∩ B) ∩ C))
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Higher order intersection signature

We type simply typed terms with intersection types.
Given a signature Σ, a higher order intersection signature over Σ is
Π = (Σ, I, ρ, f):

◮ I is a finite set of atoms

◮ ρ is a mapping from I to A
◮ f maps constants of type α to a subset of ∩α

Π
where:

◮ If α ∈ A then ∩αΠ = ρ−1(α)

◮ ∩
α→β

Π = 2∩
α
Π × {α} × ∩

β

Π.

Given (S , α, p) ∈ ∩α→β
Π

, it may be written:

◮ p1 ∩ . . . ∩ pn → p when S , ∅ and S = {p1; . . . ; pn}.

◮ Ωα → p when S = ∅.

N.B.: | ∩α
Π
| is finite.
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The derivation system
◮ We suppose we are given a HOS Σ and Π = (Σ, I, ρ, f) a

HOIS over Σ.

◮ We derive typing judgements with intersection types on simply
typed λ-terms (à la Church).

◮ Typing contexts are partial functions Γ from variables to sets
of intersection types such that Γ(xα) ⊆ ∩α

Π
.

Γ, xα : S is a context p ∈ S

Γ, xα : S ⊢Π xα : p

Γ ⊢Π M : p p ⊑αΠ q

Γ ⊢Π M : q

Γ, xα : S ⊢Π M : p

Γ ⊢Π λx
α.M : (S , α, p)

Γ ⊢Π M : (S , α, p) ∀q ∈ S . Γ ⊢Π N : q N ∈ ΛαΣ

Γ ⊢Π (MN) : p

In general we write Γ ⊢Π M : S instead of ∀p ∈ S . Γ ⊢Π M : S .



Subsumption relation on types

ι ∈ ρ(α)

ι ⊑αΠ ι

S ⊆ ∩αΠ ∀p ∈ T .∃q ∈ S . q ⊑αΠ p

S EαΠ T

S EαΠ T q ⊑β
Π

p

(T , α, q) ⊑α→β
Π

(S , α, p)
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Properties

◮ Type correctness: Γ ⊢Π M : p ⇒ ∃α. M ∈ Λα
Σ
∧ p ∈ ∩α

Π

◮ Typability is decidable: Given M, it is decidable whether
Γ ⊢Π M : p holds.

◮ Subject conversion:
M, N ∈ Λα

Σ
∧M=βηN ⇒ Γ ⊢Π N : p iff Γ ⊢Π M : p

◮ Singleton set: for every M ∈ Λα
Σ

there are Π, Γ and p such
that Γ ⊢Π N : p iff N ∈ Λα

Σ
and M =βη N.
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On the singleton theorem

◮ The proof of the singleton theorem is inspired from the proof
of a coherence Theorem [Mints 79, Babaev Soloviev 82],

◮ as for coherence theorem, the types used in the singleton
theorems can be interpreted as addresses in the term: types
generalize the notion of positions in strings used in parsing,

◮ extensions of the coherence Theorems such as [Aoto, Ono
99] lead to a different proof of the singleton theorem using
shorter types,

◮ this theorem is tightly related to the finite completeness
Theorem by [Statman 82]
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xo : ? ⊢Π a xo : q2

xo : ? ⊢Π a(a xo) : q1

xo : ? ⊢Π b(a(a xo)) : q1

xo : ? ⊢Π a(b(a(a xo))) : q0

⊢Π λx
o .a(b(a(a xo))) : ?→ q0



Example: a finite state automaton represented with
intersection types

a : (q1 → q0) ∩ (q2 → q1) ∩ (q3 → q2) ∩ (q0 → q3)
b : (q0 → q0) ∩ (q1 → q1) ∩ (q2 → q2) ∩ (q3 → q3)
accepting types: q3 → q0 or q1 → q0

a b a a
↑

q0

q1

q2

q3

a
b

a

b

a

b

a

b ⊢Π a : q1 → q0

xo : q3 ⊢Π xo : q3

xo : q3 ⊢Π a xo : q2

xo : q3 ⊢Π a(a xo) : q1

xo : q3 ⊢Π b(a(a xo)) : q1

xo : q3 ⊢Π a(b(a(a xo))) : q0

⊢Π λx
o .a(b(a(a xo))) : q3 → q0
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HOIS and finite models

We have the two following effective theorems:

◮ Theorem: Given a modelM and h inM there is a HOIS Π
and a context Γ and a set of intersection types P such that
[[M]]Mρ = h iff the sequent Γ ⊢Π M : P is derivable.

◮ Theorem: Given Γ and p the set {M|Γ ⊢Π M : p} is
recognizable.

Note: the first Theorem can be use to reduce the emptiness of
intersection types to λ-definability and give a simple proof of the
undecidability result by [ Urzyczyn 1999].
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Intersection types as automata

The two previous theorems imply that S is a recognizable set of
λ-terms iff there is a HOIS Π, a context Γ and {S1; . . . ;Sn} such that
for every M ∈ S there is k ∈ [1; n] so that Γ ⊢Π M : Sk is derivable.
A type-automaton is then defined as a tuple
A = (Π, Γ, {S1; . . . ;Sn}) and:

L(A) = {M | ∃i ∈ [n].Γ ⊢Π M : Si}

Type-automata and finite state automata in a nutshell:

TA FSA
types states

typing axioms and typing rules transitions
finite model finite algebra/semigroup
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Boolean closure properties

We can generalize the traditional constructions using automata to
type-automata:

◮ intersection and union closure can be obtained by taking a
generalization of the product of type-automata,

◮ complement uses a generalized notion of determinism or finite
models.
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Homomorphism

Given two signature Σ1 and Σ2,H homomorphism from Σ1 to Σ2 if
H is a pair of functions (g, h) such that:

◮ g maps types of Σ1 to types of Σ2 and
g(α→ β) = g(α)→ g(β)

◮ h maps terms of Σ1 to terms of Σ2 and:
◮ h(xα) = xg(α)

◮ h(c) is closed term of Σ2 of type g(α) when c has type α
◮ h(MN) = h(M)h(N)
◮ h(λxα.M) = λxg(α).h(M)
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Non-closure under homomorphism

As for trees, recognizability is not closed under homomorphism
and:

◮ it is not closed under linear homomorphism,

◮ it is not closed under first order linear homomorphism. A
counter-example is:

R = {a(λx .bx x)(cne)| ∈ N}, H(R) = {b(cne)(cne)|n ∈ N}

and H(a) = λfx .fx and H is the identy otherwise.

◮ it is not even closed under relabeling.
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recognizable.

Λα→β
Σ1

Λα
Σ1

Λβ
Σ1

Λ
H(α→β)
Σ2

Λ
H(α)
Σ2

Λ
H(β)
Σ2

H
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Λ
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Λ
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Closure under inverse homomorphism
Theorem: Given Σ1, Σ2 two HOS and H a homomorphism from
Σ1 to Σ2, if R is a recognizable set of Σ2 then H−1(R) is also
recognizable.

Λα→β
Σ1

Λα
Σ1

Λβ
Σ1

Λ
H(α→β)
Σ2

Λ
H(α)
Σ2

Λ
H(β)
Σ2

Λo
Σ2

Λβ→o
Σ2

MH(α→β)

MH(α) MH(β) Mo
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H

[[·]]



Closure under inverse homomorphism
Theorem: Given Σ1, Σ2 two HOS and H a homomorphism from
Σ1 to Σ2, if R is a recognizable set of Σ2 then H−1(R) is also
recognizable.

Λα→β
Σ1

Λα
Σ1

Λβ
Σ1

Λ
H(α→β)
Σ2

Λ
H(α)
Σ2

Λ
H(β)
Σ2

Λo
Σ2

Λβ→o
Σ2

Nα→β

Nα Nβ

MH(α→β)

MH(α) MH(β) Mo

Mβ→o

H

[[·]]

≈



Closure under inverse homomorphism
Theorem: Given Σ1, Σ2 two HOS and H a homomorphism from
Σ1 to Σ2, if R is a recognizable set of Σ2 then H−1(R) is also
recognizable.

Λα→β
Σ1

Λα
Σ1

Λβ
Σ1

Λ
H(α→β)
Σ2

Λ
H(α)
Σ2

Λ
H(β)
Σ2

Λo
Σ2

Λβ→o
Σ2

Nα→β

Nα Nβ

MH(α→β)

MH(α) MH(β) Mo

Mβ→o

H

[[·]]

≈

[[·]]′
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λ-context-free grammars

A context free grammar of lambda-term is a 4-tuple (Σ1,Σ2,H ,S)
where:

◮ Σ1 is a second order signature, the rule signature

◮ Σ2 is a signature, the object signature

◮ H is a homomorphism from Σ1 to Σ2

◮ S is an atomic type of Σ1, the type of valid derivations.

Context free grammars of λ-terms subsume many formalisms like
CFG, TAG, MCFG, PMCFG, MGs, IO-grammars,. . .
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Parsing of λ-context-free grammars

Given a λ-CFG G = (Σ1,Σ2,H ,S):

◮ given w, w ∈ L(G) iff H−1({w}) , ∅,

◮ H−1({w}) is a recognizable set of trees and its emptyness is
decidable,

◮ this gives a simple generalization of Thatcher Theorem on the
derivations of context free formalisms,

◮ furthermore this technique allows to show that parsing is a
particular case of finding the inverse image of recognizable
sets. The result extends to parsing recognizable sets.
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Generation in Montague semantics

SEEK

AND

JOHN MARY

A

UNICORN

SEEK = λxy .x cherchent y : np → np → s
AND = λxy .x et y : np → np → np

JOHN = Jean : np
MARY = Marie : np

A = λx .une x : n → np
UNICORN = licorne : n

Jean et Marie cherchent une licorne



Generation in Montague semantics

SEEK

AND

JOHN MARY

A

UNICORN

SEEK = λS O.O(λx .S(λy .seek y x)) : np → np → s
AND = λN1N2P. ∧ (N1P)(N2P) : np → np → np

JOHN = λP.P j : np
MARY = λP.P m : np

A = λP Q.∃(λx . ∧ (P x)(Q x)) : n → np
UNICORN = λx .unicorn x : n

∃(λx . ∧ (unicorn x)(∧(seek j x)(seekm x)))
≈

∃x .unicorn(x) ∧ seek(j, x) ∧ seek(m, x)
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Another corollary: decidability of 4th order matching

◮ From finite completeness we know that there is a modelM
and an element e of that model such that whenever [[t ]]M = e
then t =βη u. Solving the equation in the model entails that
the solution of a matching problem form a recognizable set.

◮ Lemma (Schmidt-Schauss) : if a fourth order equation has a
solution then it has a solution such that all its subterm contain
a bounded number of free variables.

◮ Lemma The set of terms whose subterms only contain a
bounded number of free variables can be described with a
λ-context context free grammar.

◮ Decidability of fourth order matching becomes then a corollary
of the closure of λ-context context free grammars under
intersection with recognizable sets of λ-terms.
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The other views on recognizability

Presently: λ-REC is defined with finite models (algebraic view) and
intersection types (automaton view). The other views on
recognizability are still to be explored.

◮ Congurential view: having canonical models that are only
related to a language. The difficulty comes from the fact that
standard models of the λ-calculus are not so well-behaved.
Maybe we will need to turn to locally finite Cartesian Closed
Categories.
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The other views on recognizability

Presently: λ-REC is defined with finite models (algebraic view) and
intersection types (automaton view). The other views on
recognizability are still to be explored.

◮ Congurential view: having canonical models that are only
related to a language. The difficulty comes from the fact that
standard models of the λ-calculus are not so well-behaved.
Maybe we will need to turn to locally finite Cartesian Closed
Categories.

◮ The logical view:
◮ recognizable sets of λ-terms do not seem to be definable with

a taylor-made MSOL (recognizable sets are not closed under
relabeling)

◮ a possibility is that modal µ-calculus is more adapted.

◮ Regular expressions: defining regular expressions of λ-terms
is challenging since it requires to handle an unbounded
number of free variables.
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λ-calculus, higher-order programming schemes, and
higher-order (collapsible) pushdown automata

Recognizable sets of λ-terms are well-behaved with context-free
definitions and as such they have a neat connection with
higher-order programming schemes.

◮ We already have a simple proof of Kobayashi’s results for
model-checking higher-order schemes.

◮ It remains to understand Kobayashi’s and Ong’s result in this
setting.

◮ Maybe a generalization can be achieved for schemes
generating Böhm trees (with bindings) rather than trees.

◮ We also need to articulate the invariants of recognizability with
higher-order pushdown automata (c.f. Fratani/Senizergues’s
and Carayol’s notions of recognizable HO-stacks).

◮ An on-going work establishing the connection of Krivine
machines with higher-order collapsible automata, may help
along this line, it may also connect games on Krivine
machines with games on higher-order (collapsible) automata.
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Recognizability in the λ-calculus and profinite topology

In the literature on intersection types, Stone duality is a classical
tool to construct models of the λ-calculus.

◮ A first line of research consists in trying to extend Gehrke,
Grigorieff and Pin’s approach to recognizability to
recognizability for the λ-calculus.

◮ Another one consists in strudying Weil’s pre-clones within the
settled framework.

◮ Finally we may try to generalize the notion of implicit
operations as defined by Almeida by using higher-order
operations as definable by λ-terms.
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