A-calculus and recognizability

Sylvain Salvati and Igor Walukiewicz

Réunion de démarrage ANR FREC

Outline

Simply typed A-calculus, free algebra and free monoid

Recognizability in the simply typed A-calculus

A machine-like characterization of recognizability

Closure properties

Some applications

Perspectives within FREC

Outline

Simply typed A-calculus, free algebra and free monoid

Simply typed A-calculus
Given a finite set of atomic types A, simple types are:

Ty{ = &1”(7.3{ i (ry()

Simply typed A-calculus
Given a finite set of atomic types A, simple types are:
Ty{ = 3”(7.3{ i 7}()

ord(e) = 1 and ord(@ — B) = max(ord(e) + 1, ord(B))

Simply typed A-calculus
Given a finite set of atomic types A, simple types are:
Ty{ = &Zﬂ(Tﬂ i 7'54)

ord(a) = 1 and ord(a —) = max(ord(e) + 1, ord(B))
A higher order signature is a tuple ¥ = (A, C, t) where:

» Ais a finite set of atomic types,
» Cis a finite set of constants,
» 7 is a function from C to 7 4.

Simply typed A-calculus
Given a finite set of atomic types A, simple types are:
Ty{ = ﬂ|(7.ﬂ i 7'54)

ord(a) = 1 and ord(a —) = max(ord(e) + 1, ord(B))
A higher order signature is a tuple ¥ = (A, C, t) where:
» Ais a finite set of atomic types,
» Cis a finite set of constants,
» 7 is a function from C to 7 4.
A-terms built on X are defined as:
> forae‘i'ﬂ,x“e/\‘;:,
»Cce /\;(C),
> if My e AP, My € AP, then (M1 M) € AT,
» ifMe A‘;_l, then Ax% .M € /\‘)’:2_’"1.

Free and bound variables

Free and bound variables

Free and bound variables

AX.
N
/ \X

AX.
|

N
s\

Free and bound variables

AX.
N
/ \X

AX.
|

N
/N

Free and bound variables

Az.
N
/N

AX. Zz

N
R

Free and bound variables

Az.
N
/ \Z

At.
|

N
s\

Free and bound variables

N
/\Z

At.
|

N
1/ \t

q

u

Using A-terms to represent logical formulae

We use two types:
> e, the type for entities,

Using A-terms to represent logical formulae

We use two types:
> e, the type for entities,
» t, the type for truth values.

Using A-terms to represent logical formulae

We use two types:
> e, the type for entities,
» t, the type for truth values.

We represent logical connectives as constants:
» A, Vit—=t->t-:t—t

Using A-terms to represent logical formulae

We use two types:
> e, the type for entities,
» t, the type for truth values.

We represent logical connectives as constants:
» A, Vit—=t->t-:t—t
»Vi(e-st)-t,d:(eot)>t

Using A-terms to represent logical formulae

We use two types:
> e, the type for entities,
» t, the type for truth values.

We represent logical connectives as constants:
» A, Vit—=t->t-:t—t
»Vi(e-st)-t,d:(eot)>t

» love:e - e—> twoman:e — t,man:e —t, mary:e,
john : e...

V(Ax®.3(2y®. A (man x®)(A(woman y®)(love x° y®)))

~
=~

Vx.3dy.man(x) A woman(y) A love(x,y)

Operational semantics:S-reduction

A-calculus is a theory of function and computation.
Computation is done with the relation of g-contraction (—p):

(/D(M)N Ml —>ﬁ Mz

(/D(M)N —p M[X = N] (MMl) -8 (MMz)
Ml —>ﬁ M2 Ml _)ﬁ M2

(MiM) =5 (MaM) (X My) =5 (AX.My)

B-reduction (Qﬁ): reflexive transitive closure of S-contraction

Theorem (Church-Rosser)

/\
\/

Operational semantics:n-reduction

Mathematicians do not make a difference between the function sin and the
function f : x — sin(x).
n-contraction is used to reflect this fact in the A-calculus.

(Ax.Mx) x ¢ FV(M) My —, M,
M (MMy) —,, (MM>)
Ml —),7 M2 Ml —>ﬁ M2

(MlM) -y (MzM) (/1XM1) -y (/D(Mz)

Operational semantics:n-reduction

Mathematicians do not make a difference between the function sin and the
function f : x — sin(x).
n-contraction is used to reflect this fact in the A-calculus.

(Ax.Mx) x ¢ FV(M) My —, M,
M (MMy) —,, (MM>)
Ml —),7 M2 Ml —>ﬁ M2

(MlM) -y (MzM) (/1XM1) -y (/D(Mz)

n-reduction (i>,7): reflexive transitive closure of —,

Operational semantics:n-reduction

Mathematicians do not make a difference between the function sin and the
function f : x — sin(x).
n-contraction is used to reflect this fact in the A-calculus.

(Ax.Mx) x ¢ FV(M) My —, M,
M (MMy) —,, (MM>)
Ml —),7 M2 Ml —>ﬁ M2

(MlM) -y (MzM) (/1XM1) -y (/D(Mz)

n-reduction (i>,7): reflexive transitive closure of —,
Br-reduction (—p,): —5 U —,
Bn-conversion (=g,): commutative closure of —g,

Operational semantics:n-reduction

Mathematicians do not make a difference between the function sin and the

function f : x — sin(x).
n-contraction is used to reflect this fact in the A-calculus.

(Ax.Mx) x ¢ FV(M) My —, M,
M (MMy) —,, (MM>)
Ml —),7 M2 Ml —>ﬁ M2

(MlM) -y (MzM) (/1XM1) -y (/D(Mz)

n-reduction (—,): reflexive transitive closure of —,

Br-reduction (—p,): —5 U —,
Bn-conversion (=g,): commutative closure of —g,
Church-Rosser Theorem holds for all those relations

Strong normalisation

Theorem (strong normalisation)

If M is a simply typed term, then there is no infinite chains of term
in relations of Sn-contraction starting in M.

Strong normalisation

Theorem (strong normalisation)

If M is a simply typed term, then there is no infinite chains of term
in relations of Sn-contraction starting in M.

» No matter how a term is reduced, it will always output a result,
and the same result.

Simply typed A-calculus generalizes trees

The ranked alphabet {e; g; f} where rank(e) = 0, rank(g) = 1,
rank(f) = 2 can be represented by the following second order
constants:

e:o,g:0—-0,f:0-0—-0

Simply typed A-calculus generalizes trees

The ranked alphabet {e; g; f} where rank(e) = 0, rank(g) = 1,
rank(f) = 2 can be represented by the following second order
constants:

e:o,g:0—-0,f:0-0—-0

the term g(f(e, g(e))) is represented by the A-term g(fe(ge))

Simply typed A-calculus generalizes trees

The ranked alphabet {e; g; f} where rank(e) = 0, rank(g) = 1,
rank(f) = 2 can be represented by the following second order
constants:

e:o,g:0—-0,f:0-0—-0

the term g(f(e, g(e))) is represented by the A-term g(fe(ge))
The Bohm tree of the A-term is the same as the graphic
representation of the term:

Simply typed A-calculus generalizes strings

The elements of {a; b}* can be represented with the constants:
a:o—-o,b:0—-o0
Strings are represented by terms of type 0 — o:

the string aba is represented by /aba/ = Ax°.a(b(a x°))

Simply typed A-calculus generalizes strings

The elements of {a; b}* can be represented with the constants:
a:o—-o,b:0—-o0
Strings are represented by terms of type 0 — o:
the string aba is represented by /aba/ = Ax°.a(b(a x°))

Concatenation is then s; + s, = Ax°.51(s2(x?)):

/ab/ + [/bb/ = ax°.a(b(x°)) + ax°.b(b(x°))
Ax°.(Ay°.a(by®))((2z°.b(b z°))x°)
=g, Ax°.a(b(b(bz°)))

and the empty string is Ax°.x°

Formal language theory and A-calculus

» tree generated by a ranked alphabet: free algebra
» string generated by an alphabet: free monoid

» A-terms of a given type generated by a higher order signature
are also freely generated

Formal language theory and A-calculus

» tree generated by a ranked alphabet: free algebra
» string generated by an alphabet: free monoid

» A-terms of a given type generated by a higher order signature
are also freely generated

Languages of A-terms:
» Abstract Categorial Grammars
» Sets of semantic representations in Montague semantics
» Solutions of higher-order matching equations

» Finer grained languages than those obtained in substructural
logic may be necessary in linguistics for: traces, extractions,
ellipsis. . .

Recognizability

» For strings and trees, it corresponds to one of the simplest
classes of languages,
» It naturally has several characterisation:

» finite state automaton,

» regular expressions,

» finite congruences (Myhill-Nerode),

» logic (W1S, WKS) (Biichi, Thatcher and Right, Déner),

» It is used in formal language theory to study classes of
languages (AFL, Greibach),

» Itis used, via MSO, for model checking.

Recognizability

» For strings and trees, it corresponds to one of the simplest
classes of languages,
» It naturally has several characterisation:
» finite state automaton,
» regular expressions,
» finite congruences (Myhill-Nerode),
» logic (W1S, WKS) (Biichi, Thatcher and Right, Déner),
» It is used in formal language theory to study classes of
languages (AFL, Greibach),

» Itis used, via MSO, for model checking.

We here present a generalization of recognizability for trees and
strings to the simply typed A-calculus.

Outline

Recognizability in the simply typed A-calculus

String recognizability and finite semigroup

Let’s consider a deterministic total finite state automaton:

b

()

a1

Q/ \Q
\Q/

gs

String recognizability and finite semigroup

Let’'s consider a deterministic total finite state automaton:

b

()

a1

Q/ \Q
\Q/

a3

» Each letter, a or b, can be interpreted as a function f,, f,, from
states to states such that f,(q) = q’ iff (g, @, ') is a transition.

String recognizability and finite semigroup
Let’s consider a deterministic total finite state automaton:

b

()

a1

Q/ \Q
\Q/

a3

» Each letter, a or b, can be interpreted as a function f,, f,, from
states to states such that f,(q) = q’ iff (g, @, ') is a transition.
» Aword a; ... is in the language iff
ha, 0 ...0 hy,(Qo) € {q1; g3}

Tree recognizability and finite algebra

Let’s consider the deterministic tree automata A with the states
do, 91, g2 whose final states are {qo; 1} and the rules:

f(qi, g;) — qo
9(q0) — q1

9(q1) — @
a— (o

Tree recognizability and finite algebra

Let’s consider the deterministic tree automata A with the states
do, 91, g2 whose final states are {qo; 1} and the rules:

f(gi,q)) — qo f(q.q') — Lwheng=_Lorg =1
9(@) —ma 9(q) — 1L

) —aq g(L)— L
a—(qo

Tree recognizability and finite algebra

Let’s consider the deterministic tree automata A with the states
do, 91, g2 whose final states are {qo; 1} and the rules:

f(qi, qj) — qo f(q,q) — Lwheng=_LlLorqg =1
9(@) —ma 9(q) — 1L

) —aq g(L)— L
a—(qo

Then the automaton is computing the operations in the finite

algebra A, {qo; q1; g2; L} where f(qi, gj) =a o, f(q,q") =4 L when
g=Llorqg =1...and

L(A)={t|t=aqoVt=aq}

Tree recognizability and finite algebra

Let’s consider the deterministic tree automata A with the states
do, 91, g2 whose final states are {qo; 1} and the rules:

f(qi, qj) — qo f(q,q) — Lwheng=_LlLorqg =1
9(@) —ma 9(q) — 1L

) —aq g(L)— L
a—(qo

Then the automaton is computing the operations in the finite
algebra A, {qo; g1; g2; L} where f(qj, ¢;) =4 o, f(q.9") =4 L when

g=Llorqg =1...and
L(A) ={t|t=aqoVt=aaq}

More generally this relation is formalized by Myhill-Nerode
Theorem or in [Mezei, Wright 67].

Tree recognizability and finite algebra

Let’s consider the deterministic tree automata A with the states
do, 91, g2 whose final states are {qo; 1} and the rules:

f(qi, qj) — qo f(q,q) — Lwheng=_LlLorqg =1
9(@) —ma 9(q) — 1L

) —aq g(L)— L
a—(qo

Then the automaton is computing the operations in the finite

algebra A, {qo; q1; g2; L} where f(qi, gj) =a o, f(q,q") =4 L when
g=Llorqg =1...and

L(A)={t|t=aqoVt=aq}

More generally this relation is formalized by Myhill-Nerode
Theorem or in [Mezei, Wright 67].

Finite algebras and finite semi-groups are particular cases of finite
models of the simply typed A-calculus.

Finite models for recognizability in the simply typed
A-calculus

Let X be a signature. M = ((M?),er(x)-¢) is a finite model of X if:
» The sets M* are finite and pairwise disjoint.

Finite models for recognizability in the simply typed
A-calculus

Let X be a signature. M = ((M?),er(x)-¢) is a finite model of X if:
» The sets M* are finite and pairwise disjoint.
» M8 s the set of all functions from M® to MP.

Finite models for recognizability in the simply typed
A-calculus

Let X be a signature. M = ((M?),er(x)-¢) is a finite model of X if:
» The sets M* are finite and pairwise disjoint.
» M8 s the set of all functions from M® to MP.
» (maps constants of type a to M*

Finite models for recognizability in the simply typed
A-calculus

Let X be a signature. M = ((M?),er(x)-¢) is a finite model of X if:
» The sets M* are finite and pairwise disjoint.
» M8 s the set of all functions from M® to MP.
» (maps constants of type a to M*

A variable assignment x : V — Uyer(x) M so that y(x¥) € M?.

Finite models for recognizability in the simply typed
A-calculus

Let X be a signature. M = ((M?),er(x)-¢) is a finite model of X if:
» The sets M* are finite and pairwise disjoint.
» M8 s the set of all functions from M® to MP.
» (maps constants of type a to M*

A variable assignment x : V — Uyer(x) M so that y(x¥) € M?.
The semantics of A-terms in M is inductively defined by:

- el = (),

Finite models for recognizability in the simply typed
A-calculus

Let X be a signature. M = ((M?),er(x)-¢) is a finite model of X if:
» The sets M* are finite and pairwise disjoint.
» M8 s the set of all functions from M® to MP.
» (maps constants of type a to M*

A variable assignment x : V — Uyer(x) M so that y(x¥) € M?.
The semantics of A-terms in M is inductively defined by:

- el = (),

> |[X”]|§,AI :X(X(l)7

Finite models for recognizability in the simply typed
A-calculus

Let X be a signature. M = ((M?),er(x)-¢) is a finite model of X if:
» The sets M* are finite and pairwise disjoint.
» M8 s the set of all functions from M® to MP.
» (maps constants of type a to M*

A variable assignment x : V — Uyer(x) M so that y(x¥) € M?.
The semantics of A-terms in M is inductively defined by:

> el = «(c).
> |[X”]|§,AI :X(X(l)7
> [MNLS = M (INEY),

Finite models for recognizability in the simply typed
A-calculus

Let X be a signature. M = ((M?),er(x)-¢) is a finite model of X if:
» The sets M* are finite and pairwise disjoint.
» M8 s the set of all functions from M® to MP.
» (maps constants of type a to M*

A variable assignment x : V — Uyer(x) M so that y(x¥) € M?.
The semantics of A-terms in M is inductively defined by:

> el = «(c).

- R = x(),

> [MNLS = M (INEY),
> [ax MY = ae M* - [M]Y,

Y —[x*:=a]

Finite models for recognizability in the simply typed

A-calculus

Definition:
A set of A-terms S C AY is recognizable iff there is a finite set of

variables W, a finite full model M = ((M®)4er(x).t) » N € M* and
a variable assignment y such that:

S = {MIFV(M) C W A [M]" € N}

AL Mo

[1

Finite models for recognizability in the simply typed
A-calculus
Definition:
A set of A-terms S C AY is recognizable iff there is a finite set of
variables W, a finite full model M = ((M®)4er(x).t) » N € M* and
a variable assignment y such that:

S = {MIFV(M) C W A [M]" € N}

AL Me

[1

Note:
» recognizable sets are closed under =g,
» the emptiness of recognizable sets subsumes A-definability
which is undecidable (Loader 1993).

An example: Quantified Boolean Formulae (QBF)

We use the signature with the constants: A:p—->p—->p,V.:p—
p—op.-:ip—=pV:i(p—p)—>p F:(p—p)—>p
Then the QBF formula Y?x.x V —x is represented as:

V2(AxP. v xP (=xP)

An example: Quantified Boolean Formulae (QBF)

We use the signature with the constants: A:p—->p—->p,V.:p—
p—op.-:ip—=pV:i(p—p)—>p F:(p—p)—>p
Then the QBF formula Y?x.x V —x is represented as:

V2(AxP. v xP (=xP)

We take the model B = ((8%),e7(x),¢) such that:
» 87 =1{0,1},
» A, V, - are interpreted as usual by ¢
» 1(Y?)(f) is equal to 1 iff f(1) = f(0) = 1,
» 1(3%)(f) is equal to 1 iff f(0) = L or f(1) = 1

An example: Quantified Boolean Formulae (QBF)

We use the signature with the constants: A:p—->p—->p,V.:p—
p—op.-:ip—=pV:i(p—p)—>p F:(p—p)—>p
Then the QBF formula Y?x.x V —x is represented as:

V2(AxP. v xP (=xP)

We take the model B = ((8%),e7(x),¢) such that:

» B8P ={0, 1},

» A, V, - are interpreted as usual by ¢

» 1(Y?)(f) is equal to 1 iff f(1) = f(0) = 1,

» 1(3%)(f) is equal to 1 iff f(0) = L or f(1) = 1
If M represents the QBF formula F, then [M]; = 1iff Fis a
tautology.

An example: Quantified Boolean Formulae (QBF)

We use the signature with the constants: A:p—->p—->p,V.:p—
p—op.-:ip—=pV:i(p—p)—>p F:(p—p)—>p
Then the QBF formula Y?x.x V —x is represented as:

V2(AxP. v xP (=xP)

We take the model B = ((8%),e7(x),¢) such that:

» B8P ={0, 1},

» A, V, - are interpreted as usual by ¢

» 1(Y?)(f) is equal to 1 iff f(1) = f(0) = 1,

» 1(3%)(f) is equal to 1 iff f(0) = L or f(1) = 1
If M represents the QBF formula F, then [M]; = 1iff Fis a
tautology.

Thus the set of closed terms that represent QBF tautologies is
recognizable.

Outline

A machine-like characterization of recognizability

Obtaining recognizable sets of trees with types

Recognizability is invariant under =g,, and the best way to capture
such invariants in the A-calculus is to use types.

Obtaining recognizable sets of trees with types

Recognizability is invariant under =g,, and the best way to capture
such invariants in the A-calculus is to use types.

Regular sets of trees may be defined as the sets of trees that are
recognized by a bottom-up tree automaton (BuTa).

Obtaining recognizable sets of trees with types

Recognizability is invariant under =g,, and the best way to capture
such invariants in the A-calculus is to use types.

Regular sets of trees may be defined as the sets of trees that are
recognized by a bottom-up tree automaton (BuTa).

» Given a Buta A whose final state is g, we want to find a type
system such that + t : q iff t is recognized by A,

Obtaining recognizable sets of trees with types

Recognizability is invariant under =g,, and the best way to capture
such invariants in the A-calculus is to use types.

Regular sets of trees may be defined as the sets of trees that are
recognized by a bottom-up tree automaton (BuTa).

» Given a Buta A whose final state is g, we want to find a type
system such that + t : q iff t is recognized by A,

» we need to associate types to constants in a certain way.

Obtaining recognizable sets of trees with types

Recognizability is invariant under =g,, and the best way to capture
such invariants in the A-calculus is to use types.

Regular sets of trees may be defined as the sets of trees that are
recognized by a bottom-up tree automaton (BuTa).

» Given a Buta A whose final state is g, we want to find a type
system such that + t : q iff t is recognized by A,

» we need to associate types to constants in a certain way.

An automaton have rules of the form:
a(gt.....qr) —

a(qy,....qh) — ¢

Obtaining recognizable sets of trees with types

Recognizability is invariant under =g,, and the best way to capture
such invariants in the A-calculus is to use types.

Regular sets of trees may be defined as the sets of trees that are
recognized by a bottom-up tree automaton (BuTa).

» Given a Buta A whose final state is g, we want to find a type
system such that + t : q iff t is recognized by A,

» we need to associate types to constants in a certain way.

An automaton have rules of the form:
1 1 1 o4l 1 1
a(ql,-..’qn) — (a : g —-—q,—q

a(qy,....qh) — ¢

Obtaining recognizable sets of trees with types

Recognizability is invariant under =g,, and the best way to capture
such invariants in the A-calculus is to use types.

Regular sets of trees may be defined as the sets of trees that are
recognized by a bottom-up tree automaton (BuTa).

» Given a Buta A whose final state is g, we want to find a type
system such that + t : q iff t is recognized by A,

» we need to associate types to constants in a certain way.
An automaton have rules of the form:

a(gr,....q5) — ¢ a : g-o--oag-o4q

a(qy,....qh) — ¢ a : gl o —>agyoq°

Obtaining recognizable sets of trees with types

Recognizability is invariant under =g,, and the best way to capture
such invariants in the A-calculus is to use types.

Regular sets of trees may be defined as the sets of trees that are
recognized by a bottom-up tree automaton (BuTa).

» Given a Buta A whose final state is g, we want to find a type
system such that + t : q iff t is recognized by A,

» we need to associate types to constants in a certain way.

An automaton have rules of the form:

a(gr,....q5) — ¢ a : g-o--oag-o4q
a(qy,....qh) — ¢ a : gl o —>agyoq°

Itis as if a should have at the same time the type

gi—>--—>qr— g, ...,and thetype ¢} — --- > gh - ¢°.

Intersection types

There is a type system, intersection types (Coppo, Dezani 1980),
that assignes several types to A-terms:
» itis used to type the untyped A-caculus and grasp dynamic
properties of terms via typing (strong/weak normalization,
solvability. . .),

Intersection types

There is a type system, intersection types (Coppo, Dezani 1980),
that assignes several types to A-terms:
» itis used to type the untyped A-caculus and grasp dynamic
properties of terms via typing (strong/weak normalization,
solvability. . .),

» it is used to build models of the A-calculi,

Intersection types

There is a type system, intersection types (Coppo, Dezani 1980),
that assignes several types to A-terms:

» itis used to type the untyped A-caculus and grasp dynamic
properties of terms via typing (strong/weak normalization,
solvability. . .),

» itis used to build models of the A-calculi,

» typing judgements are closed under =g,.

Intersection types a brief introduction
In the untyped A-calculus, intersection type systems are of the
form:

N-Mm:A T+M:B
r,X:AI-XZA rN-mM:Q rN-Mm:AnB

NrN-M:ANA i€{l;2}
F»—M:A,-

IN‘rM:A—-B [T+-N:A Nx:A-rM:B
'+ MN:B N-AxM:A—>B

Let S(I',A) = {M|l + M : A}, one can easily see that:
» S(MANA)=S5(l'A) and

LANA)=S(ILANQ)=S(l,A),

NANB)=S(l,BNA)and
J(An(BnC)) =Sl ((AnB)NC))

>

S(
S(
S(
S(r

Higher order intersection signature

We type simply typed terms with intersection types.

Higher order intersection signature

We type simply typed terms with intersection types.
Given a signature ¥, a higher order intersection signature over X is
Nn=(%1p,f):

» |is a finite set of atoms

Higher order intersection signature

We type simply typed terms with intersection types.
Given a signature ¥, a higher order intersection signature over X is
Nn=(%1p,f):

» | is afinite set of atoms
» pis a mapping from I to A

Higher order intersection signature

We type simply typed terms with intersection types.
Given a signature ¥, a higher order intersection signature over X is
Nn=(%1p,f):

» | is afinite set of atoms

» pis a mapping from I to A

» f maps constants of type « to a subset of N, where:

Higher order intersection signature

We type simply typed terms with intersection types.
Given a signature ¥, a higher order intersection signature over X is
Nn=(%1p,f):
» | is afinite set of atoms
» pis a mapping from I to A
» f maps constants of type « to a subset of N, where:
> Ifa e Athen N = p(a)

Higher order intersection signature

We type simply typed terms with intersection types.
Given a signature ¥, a higher order intersection signature over X is
Nn=(%1p,f):
» | is afinite set of atoms
» pis a mapping from I to A
» f maps constants of type « to a subset of N, where:
> Ifa e Athen N = p(a)
> NP = 200 x {a) x nf).

Higher order intersection signature

We type simply typed terms with intersection types.

Given a signature ¥, a higher order intersection signature over X is
Nn=(%1p,f):

» | is afinite set of atoms

» pis a mapping from I to A

» f maps constants of type « to a subset of N, where:
> Ifa e Athen N = p(a)
> n“"ﬁ 200 x {a} x ﬁﬁ

Given (S,a.p) € N} ~F it may be written:
» prN...N P —>pwhenS¢O)andS {p1;...;pn}
» Q, > pwhen S = 0.

Higher order intersection signature

We type simply typed terms with intersection types.

Given a signature ¥, a higher order intersection signature over X is
Nn=(%1p,f):

» | is afinite set of atoms

» pis a mapping from I to A

» f maps constants of type « to a subset of N, where:
> Ifa e Athen N = p(a)
> n“"ﬁ 200 x {a} x ﬁﬁ

Given (S,a.p) € N} ~F it may be written:

» prN...N P —>pwhenS¢O)andS {p1;...;pn}

» Q, > pwhen S = 0.

B.: | m‘lfl | is finite.

The derivation system

» We suppose we are givena HOS X and 1 = (X, 1,p,f) a
HOIS over ..

The derivation system

» We suppose we are givena HOS X and 1 = (X, 1,p,f) a
HOIS over ..

» We derive typing judgements with intersection types on simply
typed A-terms (a la Church).

The derivation system
» We suppose we are givena HOS X and 1 = (X, 1,p,f) a
HOIS over ..

» We derive typing judgements with intersection types on simply
typed A-terms (a la Church).

» Typing contexts are partial functions I from variables to sets
of intersection types such that I'(x*) € Ng,.

The derivation system
» We suppose we are givena HOS X and 1 = (X, 1,p,f) a
HOIS over ..

» We derive typing judgements with intersection types on simply
typed A-terms (a la Church).

» Typing contexts are partial functions I from variables to sets
of intersection types such that I'(x*) € Ng,.

INx*:Sisacontext peS

MLx*:Srpx¥:p

The derivation system
» We suppose we are givena HOS X and 1 = (X, 1,p,f) a
HOIS over ..

» We derive typing judgements with intersection types on simply
typed A-terms (a la Church).

» Typing contexts are partial functions I from variables to sets
of intersection types such that I'(x*) € Ng,.

INx*:Sisacontext peS

MLx*:Srpx¥:p
Lx*:SrmM:p
Mt XYM (S, a,p)

The derivation system
» We suppose we are givena HOS X and 1 = (X, 1,p,f) a
HOIS over ..

» We derive typing judgements with intersection types on simply
typed A-terms (a la Church).

» Typing contexts are partial functions I from variables to sets
of intersection types such that I'(x*) € Ng,.

INx*:Sisacontext peS

MLx*:Srpx¥:p
Lx*:SvnM:p
Mt XYM (S, a,p)

FenM:(S,a,p) VqeS.TranN:qg NeAy
Mtn (MN):p

The derivation system
» We suppose we are givena HOS X and 1 = (X, 1,p,f) a
HOIS over ..

» We derive typing judgements with intersection types on simply
typed A-terms (a la Church).

» Typing contexts are partial functions I from variables to sets
of intersection types such that I'(x*) € Ng,.

Mx*:Sisacontext peS TrnM:p pLCHq

MLx*:Srpx¥:p MNnM:q
Lx*:SvnM:p
Mt XYM (S, a,p)

FenM:(S,a,p) VqeS.TranN:qg NeAy
Mtn (MN):p

The derivation system
» We suppose we are givena HOS X and 1 = (X, 1,p,f) a
HOIS over ..

» We derive typing judgements with intersection types on simply
typed A-terms (a la Church).

» Typing contexts are partial functions I from variables to sets
of intersection types such that I'(x*) € Ng,.

Mx*:Sisacontext peS TrnM:p pLCHq

MLx*:Srpx¥:p MNnM:q
Lx*:SvnM:p
Mt XYM (S, a,p)

FenM:(S,a,p) VqeS.TranN:qg NeAy
Mtn (MN):p

In general we write ' +n M : Sinstead of VYp € S.T -n M : S.

Subsumption relation on types

tepla) Scnf VYpeTdgeS.qLChp

a a
LEnt ST

ST qcfp
(T.e.q) =7 (S, . p)

Properties

» Type correctness: I'tqn M:p = Ja. M€ AL Ap enf

Properties

» Type correctness: I'tqn M:p = Ja. M€ AL Ap enf

» Typability is decidable: Given M, it is decidable whether
I +n M : p holds.

Properties

» Type correctness: I'tqn M:p = Ja. M€ AL Ap enf

» Typability is decidable: Given M, it is decidable whether
I +n M : p holds.

» Subject conversion:
M,Ne/\%/\M:ﬁnN:FmN:piffrkn M:p

Properties

» Type correctness: I'tqn M:p = Ja. M€ AL Ap enf

v

Typability is decidable: Given M, it is decidable whether
I +n M : p holds.

Subject conversion:
M,Ne/\‘{/\M:ﬁnN:FmN:piffrkn M:p

Singleton set: for every M € Ay there are [, ' and p such
thatl +n N : piff N € A and M =g, N.

v

v

On the singleton theorem

» The proof of the singleton theorem is inspired from the proof
of a coherence Theorem [Mints 79, Babaev Soloviev 82],

On the singleton theorem

» The proof of the singleton theorem is inspired from the proof
of a coherence Theorem [Mints 79, Babaev Soloviev 82],

» as for coherence theorem, the types used in the singleton
theorems can be interpreted as addresses in the term: types
generalize the notion of positions in strings used in parsing,

On the singleton theorem

» The proof of the singleton theorem is inspired from the proof
of a coherence Theorem [Mints 79, Babaev Soloviev 82],

» as for coherence theorem, the types used in the singleton
theorems can be interpreted as addresses in the term: types
generalize the notion of positions in strings used in parsing,

» extensions of the coherence Theorems such as [Aoto, Ono
99] lead to a different proof of the singleton theorem using
shorter types,

On the singleton theorem

» The proof of the singleton theorem is inspired from the proof
of a coherence Theorem [Mints 79, Babaev Soloviev 82],

» as for coherence theorem, the types used in the singleton
theorems can be interpreted as addresses in the term: types
generalize the notion of positions in strings used in parsing,

» extensions of the coherence Theorems such as [Aoto, Ono
99] lead to a different proof of the singleton theorem using
shorter types,

» this theorem is tightly related to the finite completeness
Theorem by [Statman 82]

Example of the singleton construction

The unique term that can be typed with (0 > 1N1—-2) -0 — 2

Fn (0-1Nn1-52)-»0->2

Example of the singleton construction

The unique term that can be typed with (0 > 1N1—-2) -0 — 2

Fn AFT7XE (0-1n1-52)>0-2

Example of the singleton construction

The unique term that can be typed with (0 > 1N1—-2) -0 — 2

F?*:0->1Nn1—-> 2 AX". 0> 2

Fn AFT7XE (0-1n1-52)>0-2

Example of the singleton construction

The unique term that can be typed with (0 > 1N1—-2) -0 — 2

F7*:0->1Nn1—-2,x":0rn 12

F?*:0->1Nn1—-> 2 AX". 0> 2

Fn AFT7XE (0-1n1-52)>0-2

Example of the singleton construction

The unique term that can be typed with (0 > 1N1—-2) -0 — 2

FTepn 71— 2

FP*:0->1N1—->2,x":0rp " 12
F7":0->1N1->2rp AX*.FF 0> 2
b AFTXE TR (0-1Nn1-52)-»0->2

[=fF~*:0->1N1-2x*:0

Example of the singleton construction

The unique term that can be typed with (0 > 1N1—-2) -0 — 2

FTepn 71— 2 [1
FP*:0->1N1—->2,x":0rp " 12
F7*:0>1N1—> 2 AX*FF 0> 2

b AFTXE TR (0-1Nn1—-2)-»0->2

[=fF~*:0->1N1-2x*:0

Example of the singleton construction

The unique term that can be typed with (0 > 1N1—-2) -0 — 2

T 01
FTep 771> 2 Fen 77 01
7" 0->1N1—-2,x" :0kp F79(F")2
70> 1Nl -2 X5)02
n AP (FT) (05 1N1—2) 50— 2

=fF~*:0->1N1-2,x*:0

Example of the singleton construction

The unique term that can be typed with (0 > 1N1—-2) -0 — 2

T FF7":0—>1 T x*:0

FTepn 71— 2 Fepn 75 x% 01
7" 0-1N1-2,x :0kn F(F7"x"): 2
Fo" 05 1Nn1— 2k X (P X) 10 5 2

b AP PP) (05 1N1 - 2) 50— 2

[=fF~*:0->1N1-2x*:0

Example: a finite state automaton represented with
intersection types

a:(gr— q)N (g —q)Nn(gs— q2)N(q — gs)
b:(go— q)N(q1— aq1)N (G2~ q2) N (g3 — q3)
accepting types: gz — o Or g1 — Qo

a b a a

b

()

01

Q/ \Q
\Q/

Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with
intersection types
a:(qr—qo) N (g — q1)N(gs = g2) N (qo — q3)

b:(do— qo) N (g1 — q1) N (G2 = G2) N (g3 — a3)
accepting types: gz — o Or g1 — Qo

a b a a

a \aQ
) X° : 7+ a(b(a(ax®))) : go

g3 Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with
intersection types
a:(g—qo)N (g — g1)N(gs = g2) N (qo — q3)

b:(do— qo) N (g1 — q1) N (G2 = G2) N (g3 — a3)
accepting types: gz — o Or g1 — Qo

a b a a

b a1 b
a \aQ
H b o Fna:gr— Qo
N) /i X° : 7+ a(b(a(ax®))) : go

g3 Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with
intersection types
a:(qr—qo) N (g — q1)N(gs = g2) N (qo — q3)

b:(do— qo) N (g1 — q1) N (G2 = G2) N (g3 — a3)
accepting types: gz — o Or g1 — Qo

a b a a
T
b
NOW
(18 ~Aa()
. b % tna: g — g X°:?7rnb(alax®)): qu
°:7rn a(b(a(ax?))) : do
a\Q/a X Fn a(b(a(ax q

g3 Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with
intersection types
a:(qr—qo) N (g — q1)N(gs = g2) N (qo — q3)

b:(do— qo) N (g1 — 1) N (G2 = G2) N (g3 — a3)
accepting types: gz — o Or g1 — Qo

a b a a
T
b
NOW
(18 ~Aa()
. b % tna: g — g X°:?7rnb(alax®)): qu
°:7rn a(b(a(ax?))) : do
E;\Q/a X Fn a(b(a(ax q

g3 Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with
intersection types
a:(qr—qo) N (g — q1)N(gs = g2) N (qo — q3)

b:(do— qo) N (g1 — q1) N (G2 = G2) N (g3 — a3)
accepting types: gz — o Or g1 — Qo

a b a a
T
b
NOW
Qa/ aQ x°:?rpalax®):qu
. b % tna: g — g X°:?7rnb(alax®)): qu
°:7 b) :
a\Q /i X 7 v a(b(a(ax’))) : gy

g3 Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with
intersection types
a:(qr—qo) N (g — g1) N (gs = g2) N (qo — q3)

b:(do— qo) N (g1 — q1) N (G2 = G2) N (g3 — a3)
accepting types: gz — o Or g1 — Qo

a b a a
T
b
NOW
Qa/ aQ x°:?rpalax®):qu
. b % tna: g — g X°:?7rnb(alax®)): qu
°:7 b) :
a\Q /i X 7 v a(b(a(ax’))) : gy

g3 Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with
intersection types

a:(gr— q)N (g —q)Nn(gs— q2)N(q — gs)
b:(go— q)N(q1— aq1)N (G2~ q2) N (g3 — q3)
accepting types: gz — o Or g1 — Qo

xX°:?2rpax®:q

x°:?rpalax®):qu

@ Fna:q—q x°:?rnbla(ax®)):q
-
x°:?7rn a(b(alax®))) : qo

g3 Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with
intersection types

a:(gr— q)N (g —q)Nn(gs— g2)N(qo — gs)
b:(go— q)N(q1— aq1)N (G2~ q2) N (g3 — q3)
accepting types: gz — o Or g1 — Qo

xX°:?2rpax®:q

x°:?rpalax®):qu

@ Fna:q—q x°:?rnbla(ax®)):q
-
x°:?7rn a(b(alax®))) : qo

g3 Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with

intersection types

a:(gr— q)N (g —q)Nn(gs— q2)N(q — gs)
b:(go— q)N(q1— aq1)N (G2~ q2) N (g3 — q3)
accepting types: gz — o Or g1 — Qo

a b a a

1
b

()
Qc’t/ 01 \aQ

— Qo b Q2

2\

X2 X% s

xX°:?2rpax®:q

x°:?rpalax®):qu

tna: g — g X°:?7rnb(alax®)): qu

x°:?7rn a(b(alax®))) : qo

Fn Ax%.a(b(a(ax®))):? - qo

Example: a finite state automaton represented with

intersection types

a:(gr— q)N (g —q)Nn(gs— q2)N(q — gs)
b:(go— q)N(q1— aq1)N (G2~ q2) N (g3 — q3)
accepting types: gz — o Or g1 — Qo

a b a a

1
b

()
Qc’t/ 01 \aQ

— Qo b Q2

2\

X° 1 gzsn X° 1 qs

X°:qgztnpax®:q

x°:qztnalax®): o

Fna:gu—q x°:gs+nb(a(ax®)): o

x° gz tn a(b(a(ax®))) : q

Fn Ax%.a(b(a(ax®))): gz — qo

HOIS and finite models

We have the two following effective theorems:

» Theorem: Given a model M and h in M there is a HOIS T1
and a context [and a set of intersection types P such that
[MI)! = hiff the sequent T - M : P is derivable.

HOIS and finite models

We have the two following effective theorems:

» Theorem: Given a model M and h in M there is a HOIS T1
and a context [and a set of intersection types P such that
[MI)! = hiff the sequent T - M : P is derivable.

» Theorem: Given I and p the set (M|l +n M : p}is
recognizable.

HOIS and finite models

We have the two following effective theorems:

» Theorem: Given a model M and h in M there is a HOIS T1
and a context [and a set of intersection types P such that
[MI)! = hiff the sequent T - M : P is derivable.

» Theorem: Given I and p the set (M|l +n M : p}is
recognizable.

Note: the first Theorem can be use to reduce the emptiness of
intersection types to A-definability and give a simple proof of the
undecidability result by [Urzyczyn 1999].

Intersection types as automata

The two previous theorems imply that S is a recognizable set of

for every M € S thereis k € [1;n] sothat ' rn M : Sy is derivable.

Intersection types as automata

The two previous theorems imply that S is a recognizable set of

for every M € S thereis k € [1;n] sothat ' rn M : Sy is derivable.
A type-automaton is then defined as a tuple
A= (MT,{S1;...;Sn}) and:

LA)={M|Tie[n.l vnp M: S}

Intersection types as automata

The two previous theorems imply that S is a recognizable set of

for every M € S thereis k € [1;n] sothat ' rn M : Sy is derivable.
A type-automaton is then defined as a tuple
A= (MT,{S1;...;Sn}) and:

LA)={M|Tie[n.l vnp M: S}

Type-automata and finite state automata in a nutshell:

TA FSA
types states
typing axioms and typing rules transitions
finite model finite algebra/semigroup

Outline

Closure properties

Boolean closure properties

We can generalize the traditional constructions using automata to
type-automata:

» intersection and union closure can be obtained by taking a
generalization of the product of type-automata,

Boolean closure properties

We can generalize the traditional constructions using automata to
type-automata:

» intersection and union closure can be obtained by taking a
generalization of the product of type-automata,

» complement uses a generalized notion of determinism or finite
models.

Homomorphism

Given two signature ¥ ; and ¥, H homomorphism from X ; to X, if
H is a pair of functions (g, h) such that:

» g maps types of ¥ ; to types of ¥, and
g(e - B) = g(a) - 9(B)

Homomorphism

Given two signature ¥ ; and ¥, H homomorphism from X ; to X, if
H is a pair of functions (g, h) such that:
» g maps types of ¥ ; to types of ¥, and
g(a - B) = g(a) — 9(B)
» h maps terms of ¥, to terms of ¥, and:
» h(x¥) = x9(@)

Homomorphism

Given two signature ¥ ; and ¥, H homomorphism from X ; to X, if
H is a pair of functions (g, h) such that:
» g maps types of ¥ ; to types of ¥, and
g(a - p) = g(a) — 9(B)
» h maps terms of ¥, to terms of ¥, and:
» h(x¥) = x9(@)
» h(c) is closed term of X, of type g(«) when ¢ has type «

Homomorphism

Given two signature ¥ ; and ¥, H homomorphism from X ; to X, if
H is a pair of functions (g, h) such that:

» g maps types of ¥ ; to types of ¥, and
g(a - p) = g(a) — 9(B)
» h maps terms of ¥, to terms of ¥, and:
> h(Xa) — XQ(Q’)
» h(c) is closed term of X, of type g(«) when ¢ has type «
> h(MN) = h(M)h(N)

Homomorphism

Given two signature ¥ ; and ¥, H homomorphism from X ; to X, if
H is a pair of functions (g, h) such that:

» g maps types of ¥ ; to types of ¥, and
g(a - p) = g(a) — 9(B)
» h maps terms of ¥, to terms of ¥, and:
» h(x¥) = x9(@)
) is closed term of X, of type g(a) when ¢ has type @

N) = h(M)h(N)

» h(c
> h(M
> h(Ax®.M) = Ax9() h(M)

Non-closure under homomorphism

As for trees, recognizability is not closed under homomorphism
and:

» itis not closed under linear homomorphism,

Non-closure under homomorphism

As for trees, recognizability is not closed under homomorphism
and:

» itis not closed under linear homomorphism,

» itis not closed under first order linear homomorphism. A
counter-example is:

R = {a(Ax.bx x)(c"e)| € N}, H(R) = {b(c"e)(c"e)In € N}

and H(a) = Afx.fx and H is the identy otherwise.

Non-closure under homomorphism

As for trees, recognizability is not closed under homomorphism
and:

» itis not closed under linear homomorphism,

» itis not closed under first order linear homomorphism. A
counter-example is:

R = {a(Ax.bx x)(c"e)| € N}, H(R) = {b(c"e)(c"e)In € N}

and H(a) = Afx.fx and H is the identy otherwise.
» itis not even closed under relabeling.

Closure under inverse homomorphism
Theorem: Given X1, ¥, two HOS and A a homomorphism from
Y1 to X, if R is a recognizable set of ¥, then H~1(R) is also
recognizable.

Closure under inverse homomorphism
Theorem: Given X1, ¥, two HOS and A a homomorphism from
Y1 to X, if R is a recognizable set of ¥, then H~1(R) is also
recognizable.

a—f H(a—p)
Azl /\):2

@ B H(a) H(B)
nz, s, As, N3

~— T~

Closure under inverse homomorphism
Theorem: Given X1, ¥, two HOS and A a homomorphism from
Y1 to X, if R is a recognizable set of ¥, then H~1(R) is also
recognizable.

Aaaﬁ A‘?‘((a—»ﬂ)

P p)

[

MH(@) MHB)

Closure under inverse homomorphism
Theorem: Given X1, ¥, two HOS and A a homomorphism from
Y1 to X, if R is a recognizable set of ¥, then H~1(R) is also
recognizable.

a—p H(a—p) po
A A N

P p)

[

MO

Closure under inverse homomorphism
Theorem: Given X1, ¥, two HOS and A a homomorphism from
Y1 to X, if R is a recognizable set of ¥, then H~1(R) is also
recognizable.

a—p H(a—p) po
A A N

P p)

[

Closure under inverse homomorphism
Theorem: Given X1, ¥, two HOS and A a homomorphism from
Y1 to X, if R is a recognizable set of ¥, then H~1(R) is also
recognizable.

asp H(a—p) p-0
i As, i

[

Na/—»ﬁ

N(l’

Outline

Some applications

A-context-free grammars

A context free grammar of lambda-term is a 4-tuple (X1, X2, H, S)
where:

» 3, is a second order signature, the rule signature

A-context-free grammars

A context free grammar of lambda-term is a 4-tuple (X1, X2, H, S)
where:

» 3, is a second order signature, the rule signature
» 3, is a signature, the object signature

A-context-free grammars

A context free grammar of lambda-term is a 4-tuple (X1, X2, H, S)
where:

» 3, is a second order signature, the rule signature
» 3, is a signature, the object signature
» H is a homomorphism from ¥; to 2,

A-context-free grammars

A context free grammar of lambda-term is a 4-tuple (X1, X2, H, S)
where:

» 3, is a second order signature, the rule signature

» 3, is a signature, the object signature

» H is a homomorphism from ¥; to 2,

» S is an atomic type of ¥ 1, the type of valid derivations.

A-context-free grammars

A context free grammar of lambda-term is a 4-tuple (X1, X2, H, S)
where:

» 3, is a second order signature, the rule signature

» 3, is a signature, the object signature

» H is a homomorphism from ¥; to 2,

» S is an atomic type of ¥ 1, the type of valid derivations.

Context free grammars of A-terms subsume many formalisms like
CFG, TAG, MCFG, PMCFG, MGs, IO-grammars,. . .

Parsing of A-context-free grammars

Given a -CFG G = (X1,%,,H, S):
> given w, w € £L(G) iff H71({w}) £ 0,

Parsing of A-context-free grammars

Given a -CFG G = (X1,%,,H, S):
> given w, w € £L(G) iff H71({w}) £ 0,

» H1({w}) is a recognizable set of trees and its emptyness is
decidable,

Parsing of A-context-free grammars

Given a -CFG G = (X1,%,,H, S):
> given w, w € £L(G) iff H71({w}) £ 0,

» H1({w}) is a recognizable set of trees and its emptyness is
decidable,

» this gives a simple generalization of Thatcher Theorem on the
derivations of context free formalisms,

Parsing of A-context-free grammars

Given a -CFG G = (X1,%,,H, S):
» given w, w € £(G) iff H1({w}) # 0,
» H1({w}) is a recognizable set of trees and its emptyness is
decidable,

» this gives a simple generalization of Thatcher Theorem on the
derivations of context free formalisms,
» furthermore this technique allows to show that parsing is a

particular case of finding the inverse image of recognizable
sets. The result extends to parsing recognizable sets.

Generation in Montague semantics

SEEK

PN
/\

JOHN MARY UNICORN

Generation in Montague semantics

AND

JOHN

SEEK
AND
JOHN
MARY

A
UNICORN

SEEK

Jean et Marie cherchent une licorne

MARY UNICORN

Axy.x cherchenty :np - np —» s
Axy.xety:np — np — np

Jean : np

Marie : np

Ax.une x : n—np

licorne : n

Generation in Montague semantics

SEEK

/ \ (Ax. A (unicorn X)(A(seexj X)(sEekm X)))
AND A -

JOHN MARY UNICORN

Ax.uNicorN(X) A SEEK(j, X) A sEEk(M, X)

SEEK 1S 0.0(Ax.S(Ay.SEEky X)) : np — np — S

AND = ANiN2P.A (N1P)(N2P): np — np — np
JOHN = AP.Pj:np
MARY = AP.Pm:np
A = APQIX.A(Px)(QxX)):n—np
UNICORN = AX.UNICORNX : N

Another corollary: decidability of 4th order matching

» From finite completeness we know that there is a model M
and an element e of that model such that whenever [ty = e
then t =g, u. Solving the equation in the model entails that
the solution of a matching problem form a recognizable set.

Another corollary: decidability of 4th order matching

» From finite completeness we know that there is a model M
and an element e of that model such that whenever [ty = e
then t =g, u. Solving the equation in the model entails that
the solution of a matching problem form a recognizable set.

» Lemma (Schmidt-Schauss) : if a fourth order equation has a
solution then it has a solution such that all its subterm contain
a bounded number of free variables.

Another corollary: decidability of 4th order matching

» From finite completeness we know that there is a model M
and an element e of that model such that whenever [ty = e
then t =g, u. Solving the equation in the model entails that
the solution of a matching problem form a recognizable set.

» Lemma (Schmidt-Schauss) : if a fourth order equation has a
solution then it has a solution such that all its subterm contain
a bounded number of free variables.

» Lemma The set of terms whose subterms only contain a
bounded number of free variables can be described with a
A-context context free grammar.

Another corollary: decidability of 4th order matching

» From finite completeness we know that there is a model M
and an element e of that model such that whenever [ty = e
then t =g, u. Solving the equation in the model entails that
the solution of a matching problem form a recognizable set.

» Lemma (Schmidt-Schauss) : if a fourth order equation has a
solution then it has a solution such that all its subterm contain
a bounded number of free variables.

» Lemma The set of terms whose subterms only contain a
bounded number of free variables can be described with a
A-context context free grammar.

» Decidability of fourth order matching becomes then a corollary
of the closure of A-context context free grammars under
intersection with recognizable sets of A-terms.

Outline

Perspectives within FREC

The other views on recognizability

Presently: 1-REC is defined with finite models (algebraic view) and
intersection types (automaton view). The other views on
recognizability are still to be explored.

» Congurential view: having canonical models that are only
related to a language. The difficulty comes from the fact that
standard models of the A-calculus are not so well-behaved.
Maybe we will need to turn to locally finite Cartesian Closed
Categories.

The other views on recognizability

Presently: 1-REC is defined with finite models (algebraic view) and
intersection types (automaton view). The other views on
recognizability are still to be explored.

» Congurential view: having canonical models that are only
related to a language. The difficulty comes from the fact that
standard models of the A-calculus are not so well-behaved.
Maybe we will need to turn to locally finite Cartesian Closed
Categories.

» The logical view:

» recognizable sets of A-terms do not seem to be definable with
a taylor-made MSOL (recognizable sets are not closed under
relabeling)

» a possibility is that modal u-calculus is more adapted.

The other views on recognizability

Presently: 1-REC is defined with finite models (algebraic view) and
intersection types (automaton view). The other views on
recognizability are still to be explored.

» Congurential view: having canonical models that are only
related to a language. The difficulty comes from the fact that
standard models of the A-calculus are not so well-behaved.
Maybe we will need to turn to locally finite Cartesian Closed
Categories.

» The logical view:

» recognizable sets of A-terms do not seem to be definable with
a taylor-made MSOL (recognizable sets are not closed under
relabeling)

» a possibility is that modal u-calculus is more adapted.

» Regular expressions: defining regular expressions of A-terms
is challenging since it requires to handle an unbounded
number of free variables.

A-calculus, higher-order programming schemes, and

higher-order (collapsible) pushdown automata
Recognizable sets of A-terms are well-behaved with context-free
definitions and as such they have a neat connection with
higher-order programming schemes.

» We already have a simple proof of Kobayashi's results for
model-checking higher-order schemes.

A-calculus, higher-order programming schemes, and

higher-order (collapsible) pushdown automata
Recognizable sets of A-terms are well-behaved with context-free
definitions and as such they have a neat connection with
higher-order programming schemes.

» We already have a simple proof of Kobayashi’s results for
model-checking higher-order schemes.

» It remains to understand Kobayashi’'s and Ong’s result in this
setting.

A-calculus, higher-order programming schemes, and

higher-order (collapsible) pushdown automata
Recognizable sets of A-terms are well-behaved with context-free
definitions and as such they have a neat connection with
higher-order programming schemes.
» We already have a simple proof of Kobayashi’s results for
model-checking higher-order schemes.
» It remains to understand Kobayashi’'s and Ong’s result in this
setting.
» Maybe a generalization can be achieved for schemes
generating Bohm trees (with bindings) rather than trees.

A-calculus, higher-order programming schemes, and

higher-order (collapsible) pushdown automata
Recognizable sets of A-terms are well-behaved with context-free
definitions and as such they have a neat connection with
higher-order programming schemes.

» We already have a simple proof of Kobayashi’s results for
model-checking higher-order schemes.

» It remains to understand Kobayashi’'s and Ong’s result in this
setting.

» Maybe a generalization can be achieved for schemes
generating Bohm trees (with bindings) rather than trees.

» We also need to articulate the invariants of recognizability with
higher-order pushdown automata (c.f. Fratani/Senizergues’s
and Carayol’s notions of recognizable HO-stacks).

A-calculus, higher-order programming schemes, and

higher-order (collapsible) pushdown automata
Recognizable sets of A-terms are well-behaved with context-free
definitions and as such they have a neat connection with
higher-order programming schemes.

>

We already have a simple proof of Kobayashi’s results for
model-checking higher-order schemes.

It remains to understand Kobayashi's and Ong’s result in this
setting.

Maybe a generalization can be achieved for schemes
generating Bohm trees (with bindings) rather than trees.

We also need to articulate the invariants of recognizability with
higher-order pushdown automata (c.f. Fratani/Senizergues’s
and Carayol’s notions of recognizable HO-stacks).

An on-going work establishing the connection of Krivine
machines with higher-order collapsible automata, may help
along this line, it may also connect games on Krivine
machines with games on higher-order (collapsible) automata.

Recognizability in the A-calculus and profinite topology

In the literature on intersection types, Stone duality is a classical
tool to construct models of the A-calculus.

» A first line of research consists in trying to extend Gehrke,
Grigorieff and Pin’s approach to recognizability to
recognizability for the A-calculus.

Recognizability in the A-calculus and profinite topology

In the literature on intersection types, Stone duality is a classical
tool to construct models of the A-calculus.

» A first line of research consists in trying to extend Gehrke,
Grigorieff and Pin’s approach to recognizability to
recognizability for the A-calculus.

» Another one consists in strudying Weil's pre-clones within the
settled framework.

Recognizability in the A-calculus and profinite topology

In the literature on intersection types, Stone duality is a classical
tool to construct models of the A-calculus.

» A first line of research consists in trying to extend Gehrke,
Grigorieff and Pin’s approach to recognizability to
recognizability for the A-calculus.

» Another one consists in strudying Weil's pre-clones within the
settled framework.

» Finally we may try to generalize the notion of implicit
operations as defined by Almeida by using higher-order
operations as definable by A-terms.

	Simply typed -calculus, free algebra and free monoid
	Recognizability in the simply typed -calculus
	A machine-like characterization of recognizability
	Closure properties
	Some applications
	Perspectives within FREC

