Transfer Theorem

Sylvain Salvati and Igor Walukiewicz

Bordeaux University

M eval B
— Bl

M £ BT(M)

TRANSFER THEOREM
For all ¢ exists ¢ s.t.

MEG iff BT(M)E¢

M 2% BT (M)

TRANSFER THEOREM

Forall X, 7, X.
For all ¢ exists ¢ s.t. for all M € Terms(X,T,X) :

ME@ iff BT(M)E

EXAMPLE: UNFOLDING

Graph 2nfold, Tree

MSO-COMPATIBILITY OF UNFOLDING
For all 3.
For all exists ¢ s.t. for all G € Graph(X) :

GEg iff Unf(G)E e

Rem: This theorem implies Rabin’s Theorem.

i

i
ol

i

(WHONE n'

T
<

6/65

PCF (Programming Computable Functions)

search =Ap : nat — bool.
letrec f(z : nat) : nat = if (pz) then z else f(z + 1) in f0

e Proposed by Scott (1969)

e Mitchell "Foundations for Programming Languages" (1996):
Designed to be easily analyzed, rather than practical
language for writing programs. However with some
syntactic sugar it is possible to write many functional
programs in a comfortable style.

e PCF has been in the center of interest of semantics
e "sequentially computable functional”, parallel OR, full abstraction.

Finitary PCF: base types are finite.

search =Ap : "nat” — bool.
letrec f(z : "nat”) : "nat” = if (pz) then z else f(z + 1) in f0

e [Statman’04]: 34-equality on terms is undecidable.

e [Loader’96]: There is no recursive fully-abstract model

Finitary PCF = A Y-calculus
simply-typed X calculus with fixpoint operators.

map(f,l) = if | = nil then nil
else cons(f(head(l)), map(f, tail(l)))

map(f, (a, b, ¢)) = (f(a), (D), f(c))

map(f,1) = if | = nil then nil
else cons(f(head(l)), map(f, tail(l)))

if I=nil then

N

nil cons
f(head(1)) if tail(l)=nil then

nil cons

N

f(head(tail(1)) if tail(tail(l))=nil then

if 1=nil then
nil cons
f(head(l)) if tail(l)=nil then
nil cons

f(head(tail(l)) if tail(tqil(l}):nil then

Such trees are interesting because

e They reflect a part of the semantics of a program.

e They have decidable MSOL theory.
e Interesting properties can be expressed in MSOL.:
o All elements in the result are in the range of f

RESOURCE USAGE FOR FUNCTIONAL PROGRAMS
[KOBAYASHI'09)]

Vr*c
br
. c/ \r
let rec g x = if b then close(x) |
else read(x); g(x) in J(br
let r = open_in "foo" in g(r) c/ \r
Lok
c/ \r

One can verify if usage patterns are correct.

WHILE-PROGRAMS
z:=e|if £ =0 then [} else I | while z > 0do [

variables range over N and e are arithmetic expressions

e While-programs are Turing powerful.

e Does this mean that all other programming concepts are
obsolete?

e Schemes give a way to show that they are not:

e There is a recursive scheme whose tree cannot be generated by a
scheme of a while program.

RECURSION = STACKS

RECURSION = STACKS

F=MXz.if r=0thenlelse F(z —1)-z.

RECURSION = STACKS

F=MXz.if r=0thenlelse F(z —1)-z.

Thm [Courcelle PhD] -
1-st order recursive schemes = deterministic pushdown automata.

RECURSION = STACKS
F=MXz.if r=0thenlelse F(z —1)-z.
Thm [Courcelle PhD] -

1-st order recursive schemes = deterministic pushdown automata.

Thm [Senizergues] =
Equivalence of 1-st order schemes (in terms of trees they generate) is
decidable.

Thm [Courcelle] -
MSOL theory of trees generated by 1-st order schemes is decidable.

WHAT ABOUT HIGHER-ORDER SCHEMES?

SECOND-ORDER SCHEME
Map = M Az. if £ = nil then nil else f(hd(z)) - Map(f, ti(z))

Thm [Knapik, Niwinski, Urzyczyn] .
Higher-order safe schemes = higher-order pushdown automata

Theorem [Hague, Murawski, ong & serre]: 1-th order schemes = unfoldings of n-th
order collapse pushdown automata.

Thm [Parys] .
Safety is a true restriction

HERE:

On MSO theories of trees generated by higher-order schemes
(These are also the tress generated by programs of finitary PCF).

Languages,

Schemes Higher-order pushdowns

+ lanov’58 “The logical schemas of algorithms”
+ Park PhD’68 Recursive schemes
+ Scott, Elgot abstacion

Program — "+ Scheme

+ ANhO’68 indexed languages

solutionin + Maslov’74 *76 higher-order indexed
free algebra languages and higher order pushdown automata.

Interpretation
Meaning ————— Infinite tree

+ Milner’73 Plotkin’77 rcr

+ Courcelle’76 for trees: 1-st order schemes=CFL

+ Engelfriet Schmidt’77 1o/

+ Damm’82 for languages: rec schemes= higher-order pusdowns

+ Kanpik Niwinski Urzyczyn’02 safe schemes = higher-order pusdown

+ Senizergues’97 Equivalence of 1st order schemes is decidable
+Statman’04 Equivalence of PCF terms is undecidable
+L.oader’01: Lambda-definabilty is undecidable

+Ong’06: pecidability of MSOL theory

TWO MAIN ALGORITHMIC PROBLEMS

if I=nil then
nil cons
f(head(l)) if tail(l)=nil then
nil cons

f(head(tail(l)) if ﬁail(tqil(l)):nil then

Deciding equality of schemes:
Do two schemes generate the same trees?
Deciding MSOL theory for schemes:
Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues]
Ad MSOL: Decidable [Ong]

The model-checking problem:
Given S and an MSOL formula ¢ decide if [S] F .

Theoremong:
This problem is decidable.

MOTIVATION

Finitary PCF is an important abstraction of functional languages.

Finitary PCF = schemes = A\ Y-calculus.

It has been studied by semantics and language communities
since 60’ties.

e The “schematological" approach to semantics gives non-trivial
insights and without (sometimes) sacrificing decidability.

Objective : Understanding trees generated by PCF programs

M eval B
— Bl

M £ BT(M)

TRANSFER THEOREM
For all ¢ exists ¢ s.t.

MEG iff BT(M)E¢

M 2% BT (M)

TRANSFER THEOREM

Forall X, 7, X.
For all ¢ exists ¢ s.t. for all M € Terms(X,T,X) :

ME@ iff BT(M)E

EXAMPLE: UNFOLDING

Graph 2nfold, Tree

MSO-COMPATIBILITY OF UNFOLDING
For all 3.
For all exists ¢ s.t. for all G € Graph(X) :

GEg iff Unf(G)E e

Rem: This theorem implies Rabin’s Theorem.

EXAMPLE: NORMALIZABLE TERMS

TRANSFER THEOREM
For all ¢ exists ¢ s.t. for all M € Terms(3,7T,X) :

MEG iff BT(M)Ey

o Take ¢ = "finite tree"
e BT(M) E ¢ iff M has a normal form.

M E ¢ iff M has a normal form

So {M € Terms(X,T,X) : M has a normal form} is MSOL-definable.

M 2%y BT(M)

AY-terms

Types: 0 is a type, and o — S is a type if «, 3 types.

Tree signature ¥ = {a, b, ... } all constants of type 0 — 0 — 0.

TERMS
)\a%ﬂ
Q% % x%, or ¢® are in T,. | is in To—p.
Ts
Qb o
/L is in 7g. le is in 7.
7:1—>6 ’Ta

Ta

Example of terms

Yx.

Az.

Yx.

Malformed tree
)
Az.

M £y BT

Evaluation and BT (M)

f-reduction (Az.M)N —3 M[z := NJ.
o-reduction Yx.M —s M[x:= Yx.M]|.

Head redex: (Az.P)Py...P, or (Yx.P)P,...P,

Weak head normal form: hN;... N, with h a variable or a
constant different than €.

BOHM TREE
Suppose that M : 0 over a tree signature.
o if M =} bN1 Ny with b # Q then BT (M) = b
VEERN
BT(N1) BT(N2)

e otherwise BT (M) = Q°,

BOHM TREE
Suppose that M : 0 over a tree signature.
o if M —% bNy Ny with b # Q then BT (M) = b
VEERN
BT(N;) BT(Ny)

e otherwise BT (M) = Q°.

EXAMPLE 1
e Yx.ax

e Every tree generated by a recursive scheme is BT (M) for some
M.

ExamPLE 2 (QBF)
o tt = Aay. z, ff = Azy. v, They are of type 0 — 0 — 0.
e and = Abybexy. by (bazy)y, or = Abybexy. byz(bezy),
e neg = Abxy. byx
o All = \f.and(ftt)(fff), Exists = Af. or(f tt)(f ff).

QBF TO TERMS
Every QBF formula « can be translated to a term M,,:

Ve.dy. . A-y +— All(Az. Exists(\y. and z (neg v)))

Fact For every QBF sentence a:

«ais true iff M, evaluates to ft.

M 25 BT(M)

TRANSFER THEOREM

Forall X, 7, X.
For all ¢ exists ¢ s.t. for all M € Terms(3,T,X) :

MEG iff BT(M)E

e X is a tree signature
T is a finite set of terms
X is a finite set of A-variables

Terms(X,T,X): terms over ¥ with

o all subterms having type in 7,
o all A-variables from X.

Note: no limitation on Y variables.

WHAT IT MEANS M F @7

M is represented as a graph Graph(M) over the alphabet

Talph(S,T,X) = LU{Q%, Y P aeT)UXU
(AP iaeTAa—BETATYE XY,

Yx. Y
\ \

Az, Az
\ |

Q Q@

/ N 7 AN
@ X @ r
/S N /S N

Transfer Thm: For all ¢ exists ¢ s.t. for all M € Terms(X, T, X) :

MEG iff BT(M)Eg

Consequences of the transfer theorem

ONG’S THEOREM
It is decidable if for a given finite term M and MSOL formula ¢,
BT (M) E ¢ holds.

Proof: Just test M F ¢.

THE SET OF NORMALIZING TERMS IS MSOL DEFINABLE

For a fixed 7 and X there is a formula defining the set of terms
M € Terms(X,T, X) having a normal form.

Proof: Take ¢ defining the set of finite trees and consider ¢.

DIGRESSION: WHY LIMITING A-VARIABLES

QBF TO TERMS
Every QBF formula « can be translated to a term A,,:

Vedy. x A-y — All(Az. Ezists(A\y. and x (neg y)))

aistrue iff BT(M,) is the term true
Take ¢ saying that the tree consists only of the root labeled true.
Consider ¢.
My E @ iff a is true.

If we could construct ¢ without limiting X then we get collapse of the
polynomial hierarchy.

MATCHING WITH RESTRICTED NO OF VARIABLES

For a fixed X. Given M and K (without fixpoints) decide if there is a
substitution o such that
Mo =3 K

Substitution X can use only terms from Terms(X, T, X).

Proof:

o Let shape(N) be MSOL formula defining the set of terms in
Terms(X, T, X) that can be obtained from N by substitutions.

o Let p = shape(K).
e There is desired o iff the formula shape(M) A ¢ is satisfiable.
If there is a solution then there is a finite one.

SYNTHESIS FROM MODULES

Given finite A\Y-terms My, ..., M, and ¢ can one construct a A Y term
K from these terms such that BT'(M) F .

Proof:
e The candidate term K can be described as having the form
(Azy ... x5 N)M, ..., My for some term N without constants and

A-abstractions.
e Let ¢ be a formula defining terms of this form.
e There is a solution iff the formula ¢ A @ is satisfiable.

Every model of ¢ A ¢ gives a solution.

If there is a solution then there is a regular one, hence a finite one
thanks to the presence of Y.

Transfer Thm: For all ¢ exists ¢ s.t. for all M € Terms(X, T, X) :

MEG iff BT(M)Eg

A sketch of the proof

PN o B S

BT(M)E ¢
iff
BT(M) € L(A)
iff
Eve wins in (A, M)

iff

M E F (i) M
iff 1r
G(A, M) E vin G(A, M)
iff
Eve wins in G(A, M)

M is in a canonical form if
no subterm Yx. N of M has free \-variables.

Yx. N — (Yyday .. Az N[x=yay ... 2])21 ... 2y,

KRIVINE MACHINE

e Closure C == (N,p)
e Environment p =0 p[z— C]

Initial term
M = (Yx"70 N b(xy)y) (V2" czz)

A closure
C = (b(xy°), [y° « (Y2°.czz,0)))

Expansion of the closure

E(C) = b(xy")[y := B(YZ".czz,)]

KRIVINE MACHINE (2)

A configuration of a Krivine machine is a triple (N, p, S) where:
e N is aterm (a subterm of M);
@ pis an environment defined for all free variables of N;

e Sisastack (... Cy, where k and the types of the closures are
determined by the type of N: the type of C; is «; where the type of
Nisag — -+ — a — 0.

A configuration (N, p, S) represents an infinitary term:

E((N,p,5)) = E(N,p)E(C)... E(Cy)

Example: (b(xy°), [¢° + YzO%.czz], (v°,[y° « Yz'.czz]))

Fix a canonical term M. Every Y-variable bound at most once in M.
So term(x) is the subterm Yx.N of M. (It has not free A-vars).

KRIVINE MACHINE

(Az.N, p, (K, p")S) =(N, plz = (K, p')],S)
(Yx.N,p,S) =(N,p,S)
(NK, p,S) =(N,p, (K, p)S)
(z,p,8) =(N,p',S) where (N,p') = p(z)
(x,p,S) =(term(x),0,5)

LEMMA

Term E(N, p, L) has a head normal form iff Krivine machine reduces
(N,p,L)toa (b,p,S) for some constant b # €.

COMPUTING BOHM TREE

LEMMA

Term E(N, p, L) has a head normal form iff Krivine machine reduces
(N,p, L)toa (b,p,S) for some constant b # (.

(N,p, L)

*

(bﬂp/v(Nlapl)(NZv/)Q)) b

(N1, p1,€) (N2, p2,€)
l l BT (N1p1) BT (N2p2)

Ktree(N,p, L) = BT (Np)

COMPUTING BOHM TREE

(N, p, L)
(b,p,, (Nlﬂpl)(N%/’Q)) b
(vaplvg) (N27P275)
l l BT (N1p1) BT (Nap2)
Ktree(N,p, L) = BT (Np)
THEOREM

For every concrete canonical and closed A Y-term M of type 0:
BT (M) = KT(M).

All the terms appearing in configurations of the Krivine machine during
the computation of KT (M) are subterms of M.

PN e B SY

A sketch of the proof

BT(M)E ¢
iff
BT (M) € L(A)
iff
Eve wins in (A, M)

iff

M E F~ Y (vwin)
iff
G(A, M) E Ywin
iff
Eve wins in G(A, M)

M

1rF

G(A, M)

DEFINING (A, M)

Krivine machine comptuation

(v, 2 [
;ae
(b, p', (N1, p1) (N2, p2))

g

(Nlaplaa) (N2>p275)

@) C

The resulting Bohm tree

%

DEFINING (A, M)

Run of the automaton on
the Bohm tree

q:b

Jo RN

q1 ge qud

(q1,92) € d(q,b)

Run of the automaton on
Krivine machine comptuation

q:(N,p, 1)
**
4 s (b7 /7/> (vapl)(N27/)2))

— 0

0 :(N17p17‘€) QQ:(N27P2:5)

DEFINING (A, M)

Acceptance of the automaton Acceptance of the automaton
in terms of a game on the in terms of a game on Krivine machine
Bohm tree comptuation
q:(N,p, L)
for all ({,45) € 6(q,9) Ly
\/
/q:b\ q:(b’p,’(N17p1)(N27p2))
(a1, 2):B] - - (q1,43) : b (q1,43) : (b, p',C1Co) bl (qi,q3) : (b, p', C1Co)
@l 8@ a:d at:c a:d ai: (Vlv/)l i) a (\z P2, L) @ (N, »PL L) g (Ne,p2,
: * E * : * E *

A A A A

1)

DEFINITION OF (A, M)

e Therootis ¢° : (M, 0, 1)
e Anode q: (a,p, S) has a successor (qo, q1) : (a, p, S) for every
(QO7 (.I1) & 5(% a)'

e A node (qo, q1) : (a, p, (vo, No, po)(v1, N1, p1)) SUccessors
qo - (N07P07L) and q1 - (Nlnolvj*)'

DEFINITION OF (A, M)

e Therootis ¢°: (M,0, 1)
e Anode q: (a,p, S) has a successor (qo, q1) : (a, p, S) for every
(90, 1) € (g, a).
e A node (qo, q1) : (a, p, (vo, No, po)(v1, N1, p1)) SUccessors
0 : (No, po, L) and g1 : (N1, p1, L).

° A node ¢ : (Az.N, p, CS) has a successor ¢ : (N, p[z — C],S).

e Anode ¢: (Yx.N,p,S) has a successor ¢ : (N, p, S).
(
), 0

e Anode g :
q: (term(x

x, p, S), for x a recursive variable, has a successor

,9):

DEFINITION OF (A, M)

e Therootis ¢°: (M,0, 1)

e Anode q: (a,p, S) has a successor (qo, q1) : (a, p, S) for every
(90, q1) € (g, a).

e A node (qo, q1) : (a, p, (vo, No, po)(v1, N1, p1)) SUccessors
0 : (No, po, L) and gqi : (N1, p1, L).

e Anode ¢q: (Az.N,p, CS) has a successor q : (N, p[z — C], 5).

e Anode ¢: (Yx.N,p,S) has a successor ¢ : (N, p, S).

e Anode q: (x,p,S), for x a recursive variable, has a successor
q : (term(x),0,5).

e A node v labeled ¢ : (NK, p, S) has a unique successor labeled
qg:(N,p,(v,K,p)S). v-closure is created.

e A node v labeled g : (z,p, S), for z a A-variable and
p(z) = (v, N, p'), has a unique successor labeled ¢ : (N, o/, S).
Node v uses a v'-closure.

e A node v labeled ¢ : (NK, p, S) has a unique successor labeled
q:(N,p,(v,K,p)S). v-closure is created.

e A node v labeled ¢ : (z,p, S), for z a A-variable and
p(z) = (v, N, p'), has a unique successor labeled ¢ : (N, o/, S).
Node v uses a v'-closure.

@) q¢: (NK,p,9)

Whele () =, K, p)

Y
@ ¢ : (K,p,0)

Thm: Eve wins in (A, M) iff Aaccepts BT(M).

PN e B SY

A sketch of the proof

BT(M)E ¢
iff
BT (M) € L(A)
iff
Eve wins in (A, M)

iff

M E F~ Y (vwin)
iff
G(A, M) E Ywin
iff
Eve wins in G(A, M)

M

1rF

G(A, M)

FroMm K(A, M) To G(A, M)

@ q: (NK,p,S)

q:(N,p,(v,K,p)S)

/ @ ¢: (N,p, RS) @ q (K, p,0)
”
@ o'+ .00 © o+ 0.0 for all (¢,7") € R

where p'(z) = (v, K, p) where p'(z) = R,
@ q : (K, p,0) and (¢',7") € R

e Residual of type 0 is from P(Q x [d]).
e Residual of type 0 — 0is from P(Q x [d]) — P(Q x [d]).

G(A, M)

qg: (Az.N,p,R-S
q: (a,p, RoR:
G W N p,
q:(x,p,

)
)
5)
5)

i
o
=
-

q:(N,plz — R],S)

(90, @) : (a, p, RoR1)
q:(N,p,5)

g & (BeEed &)

for (qo, 1) € 0(q, a)

X a recursion variable

G(A, M)

q:(NK,p,S) with K:mp = -+ =17 =0

forevery R:7y —---— 17 —0

for every (R1,...,R;)
x .0 and every (¢',r") € R(R1,...,R)

¢:(N.p.R-5) ¢ (K.p Ry R)

Eve wins in a position:

° q:(z,p,8)
if (q,7k(q)) € Ryo(Ry,..., Ry); where p(z) = Ry and S = Ry -+ Ry,

® (g0, q1) : (a,p, RoRn)
if (g0, 7k(q0)) € Ro Lrr(go) @ND (g1, 7k(q1)) € Ri Lrk(qy)-

62 /65

PROPERTIES OF G(A, M)

@ q: (NK,p,9)

@ q: (NK,p,S)
@) a: (N,p, (v, K,p)S) v
@) q: (N,p, RS) @ ¢ : (K.p.0)
4 (0.0 0 ¢ (2,0,0) for all (¢/,r") € R
where p'(z) = (v, K, p) where p'(z) = R,
q : (K, p,0) and (¢',r") € R

Thm: Eve wins in G(A, M) iff Eve wins in IC(A, M).

Obs: For every N there are finitely many nodes in G(.A, M) containing
N.

63 /65

A sketch of the proof

@ BT(M)FE ¢ M E F~ (ywin) M
1 iff iff 1r
A BT(M) € L(A) G(A, M) E vyin G(A, M)
iff iff
Eve wins in K(A, M) iff Eve wins in G(A, M)

Prop: G(A, M) is definable from in Graph(M) by means of
MSOL-transduction.

M &% BT(M)

TRANSFER THEOREM
For all ¢ exists ¢ s.t. for all M € Terms(3,T,X) :

MEG iff BT(M)E¢

