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Example: Unfolding

Graph unfold−−−−→ Tree

MSO-compatibility of unfolding
For all Σ.
For all ϕ exists ϕ̂ s.t. for all G ∈ Graph(Σ) :

G � ϕ̂ iff Unf (G) � ϕ

Rem: This theorem implies Rabin’s Theorem.
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PCF (Programming Computable Functions)

search ≡λp : nat → bool.
letrec f (x : nat) : nat = if (px) then x else f (x + 1) in f 0

Proposed by Scott (1969)
Mitchell "Foundations for Programming Languages" (1996):

Designed to be easily analyzed, rather than practical
language for writing programs. However with some
syntactic sugar it is possible to write many functional
programs in a comfortable style.

PCF has been in the center of interest of semantics
"sequentially computable functional", parallel OR, full abstraction.
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Finitary PCF: base types are finite.

search ≡λp : ”nat”→ bool.
letrec f (x : ”nat”) : ”nat” = if (px) then x else f (x + 1) in f 0

[Statman’04]: βδ-equality on terms is undecidable.

[Loader’96]: There is no recursive fully-abstract model

Finitary PCF ≡ λY -calculus
simply-typed λ calculus with fixpoint operators.
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map(f , l) ≡ if l = nil then nil
else cons(f (head(l)),map(f , tail(l)))

map(f , (a, b, c)) = (f (a), f (b), f (c))
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map(f , l) ≡ if l = nil then nil
else cons(f (head(l)),map(f , tail(l)))

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons
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if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

Such trees are interesting because

They reflect a part of the semantics of a program.
They have decidable MSOL theory.
Interesting properties can be expressed in MSOL:

All elements in the result are in the range of f
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Resource usage for functional programs
[Kobayashi’09]

One can verify if usage patterns are correct.
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While-programs

x := e | if x = 0 then I1 else I2 | while x > 0 do I

variables range over N and e are arithmetic expressions

While-programs are Turing powerful.
Does this mean that all other programming concepts are
obsolete?
Schemes give a way to show that they are not:

There is a recursive scheme whose tree cannot be generated by a
scheme of a while program.

13 / 65



Recursion ≡ stacks

F ≡ λx. if x = 0 then 1 else F(x − 1) · x.

Thm [Courcelle PhD]:
1-st order recursive schemes ≡ deterministic pushdown automata.

Thm [Senizergues]:
Equivalence of 1-st order schemes (in terms of trees they generate) is
decidable.

Thm [Courcelle]:
MSOL theory of trees generated by 1-st order schemes is decidable.
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What about higher-order schemes?
Second-order scheme
Map ≡ λf .λx. if x = nil then nil else f (hd(x)) ·Map(f , tl(x))

Thm [Knapik, Niwiński, Urzyczyn]:
Higher-order safe schemes ≡ higher-order pushdown automata

Theorem [Hague, Murawski, Ong & Serre]: n-th order schemes ≡ unfoldings of n-th
order collapse pushdown automata.

Thm [Parys]:
Safety is a true restriction

Here:
On MSO theories of trees generated by higher-order schemes
(These are also the tress generated by programs of finitary PCF).
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+ Ianov’58 “The logical schemas of algorithms”

+ Park PhD’68 Recursive schemes

+ Scott, Elgot

+ Milner’73 Plotkin’77 PCF

Program Scheme

In!nite treeMeaning

abstraction

solution in a
free algebra

Interpretation

+ Aho’68 indexed languages

+ Maslov’74 ’76 higher-order indexed 
languages and higher order pushdown automata.

Schemes Languages,
Higher-order pushdowns

+ Courcelle’76 for trees: 1-st order schemes=CFL 
+ Engelfriet Schmidt’77 IO/OI

+ Damm’82 for languages: rec schemes= higher-order pusdowns

+ Kanpik Niwinski Urzyczyn’02 Safe schemes = higher-order pusdown

+ Senizergues’97 Equivalence of 1st order schemes is decidable

+Statman’04 Equivalence of PCF terms is undecidable

+Loader’01: Lambda-definability is undecidable

+ Ong’06: Decidability of MSOL theory 
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Two main algorithmic problems

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

Deciding equality of schemes:
Do two schemes generate the same trees?

Deciding MSOL theory for schemes:
Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues]
Ad MSOL: Decidable [Ong]
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The model-checking problem:
Given S and an MSOL formula ϕ decide if [[S ]] � ϕ.

Theorem[Ong]:
This problem is decidable.

[[S ]] = g

c a

g

b
c

a

g

b

b
c

a
...

� ϕ
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Motivation

Finitary PCF is an important abstraction of functional languages.

Finitary PCF ≡ schemes ≡ λY -calculus.
It has been studied by semantics and language communities
since 60’ties.

The “schematological" approach to semantics gives non-trivial
insights and without (sometimes) sacrificing decidability.

Objective : Understanding trees generated by PCF programs
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Example: Unfolding

Graph unfold−−−−→ Tree

MSO-compatibility of unfolding
For all Σ.
For all ϕ exists ϕ̂ s.t. for all G ∈ Graph(Σ) :

G � ϕ̂ iff Unf (G) � ϕ

Rem: This theorem implies Rabin’s Theorem.
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Example: Normalizable terms

Transfer Theorem
For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

Take ϕ ≡ "finite tree"
BT (M ) � ϕ iff M has a normal form.

M � ϕ̂ iff M has a normal form

So {M ∈ Terms(Σ, T ,X ) : M has a normal form} is MSOL-definable.
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M eval−−→ BT (M )

λY -terms
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Types: 0 is a type, and α→ β is a type if α, β types.

Tree signature Σ = {a, b, . . . } all constants of type 0→ 0→ 0.

Terms
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Example of terms Malformed tree
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M eval−−→ BT (M )

Evaluation and BT (M )
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β-reduction (λx.M )N →β M [x := N ].
δ-reduction Y x.M →δ M [x := Y x.M ].

Head redex: (λx.P)P0 . . .Pn or (Y x.P)P1 . . .Pn

Weak head normal form: hN1 . . .Nk with h a variable or a
constant different than Ω.

Böhm tree
Suppose that M : 0 over a tree signature.

if M →∗h bN1N2 with b 6= Ω then BT (M ) = b

BT (N1) BT (N2)

otherwise BT (M ) = Ω0.
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Böhm tree
Suppose that M : 0 over a tree signature.

if M →∗h bN1N2 with b 6= Ω then BT (M ) = b

BT (N1) BT (N2)

otherwise BT (M ) = Ω0.

Example 1
Y x.ax
Every tree generated by a recursive scheme is BT (M ) for some
M .
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Example 2 (QBF)
tt = λxy. x, ff = λxy. y, They are of type 0→ 0→ 0.
and = λb1b2xy. b1(b2xy)y, or = λb1b2xy. b1x(b2xy),
neg = λbxy. byx
All = λf . and(f tt)(f ff), Exists = λf . or(f tt)(f ff).

QBF to terms
Every QBF formula α can be translated to a term Mα:

∀x.∃y. x ∧ ¬y 7→ All(λx. Exists(λy. and x (neg y)))

Fact For every QBF sentence α:

α is true iff Mα evaluates to tt.
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M eval−−→ BT (M )

Transfer Theorem
For all Σ, T ,X .
For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

Σ is a tree signature
T is a finite set of terms
X is a finite set of λ-variables
Terms(Σ, T ,X ): terms over Σ with

all subterms having type in T ,
all λ-variables from X .

Note: no limitation on Y variables.
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What it means M � ϕ̂?

M is represented as a graph Graph(M ) over the alphabet

Talph(Σ, T ,X ) = Σ ∪ {@α,Y α, �α: α ∈ T } ∪ X∪
{λα→βxα : α ∈ T ∧ α→ β ∈ T ∧ xα ∈ X} .

Y x.

λz.

@

@
z

x

Y

λz

@

@
z

�
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Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

Consequences of the transfer theorem
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Ong’s Theorem
It is decidable if for a given finite term M and MSOL formula ϕ,
BT (M ) � ϕ holds.

Proof: Just test M � ϕ̂.
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The set of normalizing terms is MSOL definable
For a fixed T and X there is a formula defining the set of terms
M ∈ Terms(Σ, T ,X ) having a normal form.

Proof: Take ϕ defining the set of finite trees and consider ϕ̂.
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Digression: why limiting λ-variables

QBF to terms
Every QBF formula α can be translated to a term Mα:

∀x.∃y. x ∧ ¬y 7→ All(λx. Exists(λy. and x (neg y)))

α is true iff BT (Mα) is the term true

Take ϕ saying that the tree consists only of the root labeled true.
Consider ϕ̂.

Mα � ϕ̂ iff α is true.

If we could construct ϕ̂ without limiting X then we get collapse of the
polynomial hierarchy.
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Matching with restricted no of variables
For a fixed X . Given M and K (without fixpoints) decide if there is a
substitution σ such that

Mσ =β K

Substitution Σ can use only terms from Terms(Σ, T ,X ).

Proof:
Let shape(N ) be MSOL formula defining the set of terms in
Terms(Σ, T ,X ) that can be obtained from N by substitutions.
Let ϕ ≡ shape(K ).
There is desired σ iff the formula shape(M ) ∧ ϕ̂ is satisfiable.

If there is a solution then there is a finite one.

41 / 65



Synthesis from modules
Given finite λY -terms M1, . . . ,Mk and ϕ can one construct a λY term
K from these terms such that BT (M ) � ϕ.

Proof:
The candidate term K can be described as having the form
(λx1 . . . xk . N )M1, . . . ,Mk for some term N without constants and
λ-abstractions.
Let ψ be a formula defining terms of this form.
There is a solution iff the formula ψ ∧ ϕ̂ is satisfiable.

Every model of ψ ∧ ϕ̂ gives a solution.

If there is a solution then there is a regular one, hence a finite one
thanks to the presence of Y .
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Transfer Thm: For all ϕ exists ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ) :

M � ϕ̂ iff BT (M ) � ϕ

A sketch of the proof

43 / 65



44 / 65



M is in a canonical form if
no subterm Y x. N of M has free λ-variables.

Y x. N 7→ (Y y.λx1 . . . λxn .N [x := yx1 . . . xn ])x1 . . . xn
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Krivine machine

Closure C ::= (N , ρ)
Environment ρ ::= ∅ | ρ[x 7→ C ]

Initial term
M = (Y x0→0.λy0.b(xy)y)(Y z0.czz)

A closure
C = (b(xy0), [y0 ← (Y z0.czz, ∅)])

Expansion of the closure

E(C ) = b(xy0)[y := E(Y z0.czz, ∅)]
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Krivine machine (2)

A configuration of a Krivine machine is a triple (N , ρ,S) where:
N is a term (a subterm of M );
ρ is an environment defined for all free variables of N ;
S is a stack C1 . . .Ck , where k and the types of the closures are
determined by the type of N : the type of Ci is αi where the type of
N is α1 → · · · → αk → 0.

A configuration (N , ρ,S) represents an infinitary term:

E((N , ρ,S)) = E(N , ρ)E(C1) . . .E(Cn)

Example: (b(xy0), [y0 ← Y z0.czz], (y0, [y0 ← Y z0.czz]))
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Fix a canonical term M . Every Y -variable bound at most once in M .
So term(x) is the subterm Y x.N of M . (It has not free λ-vars).

Krivine machine

(λx.N , ρ, (K , ρ′)S)→(N , ρ[x 7→ (K , ρ′)],S)
(Y x.N , ρ,S)→(N , ρ,S)

(NK , ρ,S)→(N , ρ, (K , ρ)S)
(x, ρ,S)→(N , ρ′,S) where (N , ρ′) = ρ(x)
(x, ρ,S)→(term(x), ∅,S)

Lemma
Term E(N , ρ,⊥) has a head normal form iff Krivine machine reduces
(N , ρ,⊥) to a (b, ρ,S) for some constant b 6= Ω.
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Computing Böhm tree

Lemma
Term E(N , ρ,⊥) has a head normal form iff Krivine machine reduces
(N , ρ,⊥) to a (b, ρ,S) for some constant b 6= Ω.

*

* *
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Computing Böhm tree

*

* *

Theorem
For every concrete canonical and closed λY -term M of type 0:

BT (M ) = KT (M ).

All the terms appearing in configurations of the Krivine machine during
the computation of KT (M ) are subterms of M .
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A sketch of the proof
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Defining K(A,M )

*

* *

Krivine machine comptuation The resulting Bohm tree
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Defining K(A,M )

*

* *

Run of the automaton on
Krivine machine comptuation

Run of the automaton on
the  Bohm tree
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Defining K(A,M )

*

* * * *

Acceptance of the automaton 
in terms of a game on Krivine machine
comptuation

Acceptance of the automaton
in terms of a game on the 
Bohm tree
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Definition of K(A,M )

The root is q0 : (M , ∅,⊥)
A node q : (a, ρ,S) has a successor (q0, q1) : (a, ρ,S) for every
(q0, q1) ∈ δ(q, a).
A node (q0, q1) : (a, ρ, (v0,N0, ρ0)(v1,N1, ρ1)) successors
q0 : (N0, ρ0,⊥) and q1 : (N1, ρ1,⊥).

A node q : (λx.N , ρ,CS) has a successor q : (N , ρ[x 7→ C ],S).
A node q : (Y x.N , ρ,S) has a successor q : (N , ρ,S).
A node q : (x, ρ,S), for x a recursive variable, has a successor
q : (term(x), ∅,S).
A node v labeled q : (NK , ρ,S) has a unique successor labeled
q : (N , ρ, (v,K , ρ)S). v-closure is created.
A node v labeled q : (x, ρ,S), for x a λ-variable and
ρ(x) = (v′,N , ρ′), has a unique successor labeled q : (N , ρ′,S).
Node v uses a v′-closure.
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A node v labeled q : (NK , ρ,S) has a unique successor labeled
q : (N , ρ, (v,K , ρ)S). v-closure is created.
A node v labeled q : (x, ρ,S), for x a λ-variable and
ρ(x) = (v′,N , ρ′), has a unique successor labeled q : (N , ρ′,S).
Node v uses a v′-closure.

Thm: Eve wins in K(A,M ) iff A accepts BT (M ).
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A sketch of the proof
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From K(A,M ) to G(A,M )

Residual of type 0 is from P(Q × [d]).
Residual of type 0→ 0 is from P(Q × [d])→ P(Q × [d]).
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G(A,M )

q : (λx.N , ρ,R · S)→ q : (N , ρ[x 7→ R],S)
q : (a, ρ,R0R1)→ (q0, q1) : (a, ρ,R0R1) for (q0, q1) ∈ δ(q, a)

q : (Y x.N , ρ,S)→ q : (N , ρ,S)
q : (x, ρ,S)→ q : (term(x), ρ,S) x a recursion variable
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G(A,M )

Eve wins in a position:
q : (x, ρ,S)
if (q, rk(q)) ∈ Rx(R1, . . . ,Rk); where ρ(x) = Rx and S = R1 · · ·Rk .
(q0, q1) : (a, ρ,R0R1)
if (q0, rk(q0)) ∈ R0 �rk(q0) and (q1, rk(q1)) ∈ R1 �rk(q1).
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Properties of G(A,M )

Thm: Eve wins in G(A,M ) iff Eve wins in K(A,M ).

Obs: For every N there are finitely many nodes in G(A,M ) containing
N .
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A sketch of the proof

Prop: G(A,M ) is definable from in Graph(M ) by means of
MSOL-transduction.
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Transfer Theorem
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