Transfer Theorem

Sylvain Salvati and Igor Walukiewicz Bordeaux University

TRANSFER THEOREM For all φ exists $\hat{\varphi}$ s.t.

$M\vDash \widehat{\varphi} \quad \text{iff} \quad BT(M)\vDash \varphi$

TRANSFER THEOREM For all $\Sigma, \mathcal{T}, \mathcal{X}$. For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \vDash \hat{\varphi}$ iff $BT(M) \vDash \varphi$

EXAMPLE: UNFOLDING

Graph
$$\xrightarrow{unfold}$$
 Tree

MSO-COMPATIBILITY OF UNFOLDING For all Σ .

For all φ exists $\widehat{\varphi}$ s.t. for all $G \in Graph(\Sigma)$:

 $G \vDash \widehat{\varphi} \quad \text{iff} \quad Unf(G) \vDash \varphi$

Rem: This theorem implies Rabin's Theorem.

PCF (Programming Computable Functions)

 $\begin{aligned} search \equiv &\lambda p: nat \to bool. \\ &\mathbf{letrec} \; f(x:nat): nat = \mathbf{if} \; (px) \; \mathbf{then} \; x \; \mathbf{else} \; f(x+1) \; \mathbf{in} \; f0 \end{aligned}$

- Proposed by Scott (1969)
- Mitchell "Foundations for Programming Languages" (1996): Designed to be easily analyzed, rather than practical language for writing programs. However with some syntactic sugar it is possible to write many functional programs in a comfortable style.
- PCF has been in the center of interest of semantics
 - "sequentially computable functional", parallel OR, full abstraction.

Finitary PCF: base types are finite.

 $\begin{aligned} search \equiv &\lambda p: "nat" \to bool. \\ & \mathbf{letrec} \; f(x:"nat"): "nat" = \mathbf{if} \; (px) \; \mathbf{then} \; x \; \mathbf{else} \; f(x+1) \; \mathbf{in} \; f0 \end{aligned}$

- [Statman'04]: $\beta\delta$ -equality on terms is undecidable.
- [Loader'96]: There is no recursive fully-abstract model

Finitary PCF $\equiv \lambda Y$ -calculus simply-typed λ calculus with fixpoint operators. $map(f, l) \equiv if \ l = nil then \ nil$ else cons(f(head(l)), map(f, tail(l)))

map(f, (a, b, c)) = (f(a), f(b), f(c))

 $map(f, l) \equiv$ if l = nil then nilelse cons(f(head(l)), map(f, tail(l)))

Such trees are interesting because

- They reflect a part of the semantics of a program.
- They have decidable MSOL theory.
- Interesting properties can be expressed in MSOL:
 - All elements in the result are in the range of f

Resource usage for functional programs [Kobayashi'09]

One can verify if usage patterns are correct.

WHILE-PROGRAMS

 $x := e \mid \texttt{if } x = 0 \texttt{ then } I_1 \texttt{ else } I_2 \mid \texttt{while } x > 0 \texttt{ do } I$

variables range over $\mathbb N$ and e are arithmetic expressions

- While-programs are Turing powerful.
- Does this mean that all other programming concepts are obsolete?
- Schemes give a way to show that they are not:
 - There is a recursive scheme whose tree cannot be generated by a scheme of a while program.

 $F \equiv \lambda x$. if x = 0 then 1 else $F(x - 1) \cdot x$.

 $F \equiv \lambda x$. if x = 0 then 1 else $F(x - 1) \cdot x$.

Thm [Courcelle PhD]:

1-st order recursive schemes \equiv deterministic pushdown automata.

 $F \equiv \lambda x$. if x = 0 then 1 else $F(x - 1) \cdot x$.

Thm [Courcelle PhD]: 1-st order recursive schemes \equiv deterministic pushdown automata.

Thm [Senizergues]: Equivalence of 1-st order schemes (in terms of trees they generate) is decidable.

Thm [Courcelle]: MSOL theory of trees generated by 1-st order schemes is decidable.

WHAT ABOUT HIGHER-ORDER SCHEMES?

Second-order scheme

 $Map \equiv \lambda f.\lambda x.$ if x = nil then nil else $f(hd(x)) \cdot Map(f, tl(x))$

Thm [Knapik, Niwiński, Urzyczyn]: Higher-order safe schemes \equiv higher-order pushdown automata

Theorem [Hague, Murawski, Ong & Serre]: n-th order schemes \equiv unfoldings of n-th order collapse pushdown automata.

Thm [Parys]: Safety is a true restriction

HERE:

On MSO theories of trees generated by higher-order schemes (These are also the tress generated by programs of finitary PCF).

Languages, Higher-order pushdowns

+ Aho'68 indexed languages

+ Maslov'74 '76 higher-order indexed languages and higher order pushdown automata.

- + Courcelle'76 for trees: 1-st order schemes=CFL
- + Engelfriet Schmidt'77 10/01
- + Damm'82 for languages: rec schemes= higher-order pusdowns
- + Kanpik Niwinski Urzyczyn'02 Safe schemes = higher-order pusdown
- + Senizergues'97 Equivalence of 1st order schemes is decidable +Statman'04 Equivalence of PCE terms is undecidable
 - +Loader'01: Lambda-definability is undecidable
- + Ong'06: Decidability of MSOL theory

Two main algorithmic problems

Deciding equality of schemes:

Do two schemes generate the same trees? Deciding MSOL theory for schemes:

Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues] Ad MSOL: Decidable [Ong] The model-checking problem:

Given S and an MSOL formula φ decide if $\llbracket S \rrbracket \vDash \varphi$.

Theorem[Ong]: This problem is decidable.

MOTIVATION

- Finitary PCF is an important abstraction of functional languages.
- Finitary PCF \equiv schemes $\equiv \lambda Y$ -calculus.
- It has been studied by semantics and language communities since 60'ties.
- The "schematological" approach to semantics gives non-trivial insights and without (sometimes) sacrificing decidability.

Objective : Understanding trees generated by PCF programs

TRANSFER THEOREM For all φ exists $\hat{\varphi}$ s.t.

$M\vDash \widehat{\varphi} \quad \text{iff} \quad BT(M)\vDash \varphi$

TRANSFER THEOREM For all $\Sigma, \mathcal{T}, \mathcal{X}$. For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \vDash \hat{\varphi}$ iff $BT(M) \vDash \varphi$

EXAMPLE: UNFOLDING

Graph
$$\xrightarrow{unfold}$$
 Tree

MSO-COMPATIBILITY OF UNFOLDING For all Σ .

For all φ exists $\widehat{\varphi}$ s.t. for all $G \in Graph(\Sigma)$:

 $G\vDash \widehat{\varphi} \quad \text{iff} \quad Unf(G)\vDash \varphi$

Rem: This theorem implies Rabin's Theorem.

EXAMPLE: NORMALIZABLE TERMS

TRANSFER THEOREM

```
For all \varphi exists \widehat{\varphi} s.t. for all M \in Terms(\Sigma, \mathcal{T}, \mathcal{X}):
```

 $M \vDash \widehat{\varphi} \quad \text{iff} \quad BT(M) \vDash \varphi$

• Take $\varphi \equiv$ "finite tree"

• $BT(M) \vDash \varphi$ iff *M* has a normal form.

 $M \vDash \widehat{\varphi}$ iff M has a normal form

So $\{M \in Terms(\Sigma, \mathcal{T}, \mathcal{X}) : M \text{ has a normal form}\}$ is MSOL-definable.

 $M \xrightarrow{eval} BT(M)$

λY -terms

Types: 0 is a type, and $\alpha \rightarrow \beta$ is a type if α, β types.

Tree signature $\Sigma = \{a, b, ...\}$ all constants of type $0 \to 0 \to 0$.

TERMS

 $\Omega^{\alpha}, x^{\alpha}, \mathbf{x}^{\alpha}, \text{ or } c^{\alpha} \text{ are in } \mathcal{T}_{\alpha}.$

$$\begin{array}{l} \lambda^{\alpha \to \beta} \\ \downarrow \\ \mathcal{T}_{\beta} \end{array} \quad \text{is in } \mathcal{T}_{\alpha \to \beta}. \\ \\ Y^{\alpha} \mathbf{x} \\ \downarrow \\ \mathcal{T}_{\alpha} \end{array} \quad \text{is in } \mathcal{T}_{\alpha}. \end{array}$$

 $M \xrightarrow{eval} BT(M)$

Evaluation and BT(M)

- β -reduction $(\lambda x.M)N \rightarrow_{\beta} M[x := N].$
- δ -reduction $Y\mathbf{x}.M \rightarrow_{\delta} M[\mathbf{x} := Y\mathbf{x}.M].$
- Head redex: $(\lambda x.P)P_0 \dots P_n$ or $(Y\mathbf{x}.P)P_1 \dots P_n$
- Weak head normal form: $hN_1 \dots N_k$ with h a variable or a constant different than Ω .

Böhm tree

Suppose that M: 0 over a tree signature.

• if $M \to_h^* bN_1N_2$ with $b \neq \Omega$ then BT(M) =

$$\begin{array}{c}
 b \\
 \swarrow \\
 BT(N_1) \quad BT(N_2)
\end{array}$$

• otherwise $BT(M) = \Omega^0$.

Böhm tree

Suppose that M : 0 over a tree signature.

• if $M \rightarrow_h^* bN_1N_2$ with $b \neq \Omega$ then BT(M) =

$$\begin{array}{c}
b \\
\searrow & \searrow \\
BT(N_1) & BT(N_2)
\end{array}$$

• otherwise $BT(M) = \Omega^0$.

Example 1

- Y**x**.a**x**
- Every tree generated by a recursive scheme is BT(M) for some M.

EXAMPLE 2 (QBF)

- $tt = \lambda xy. x$, $ff = \lambda xy. y$,
- and $= \lambda b_1 b_2 xy$. $b_1(b_2 xy)y$,
- $neg = \lambda bxy. byx$

They are of type $0 \rightarrow 0 \rightarrow 0$. or $= \lambda b_1 b_2 xy. \ b_1 x (b_2 xy),$

• All = λf . and(f tt)(f ff), Exists = λf . or(f tt)(f ff).

QBF TO TERMS

Every *QBF* formula α can be translated to a term M_{α} :

$$\forall x. \exists y. x \land \neg y \mapsto \mathsf{All}(\lambda x. \mathsf{Exists}(\lambda y. \mathsf{and} x (\mathsf{neg} y)))$$

Fact For every QBF sentence α :

 α is true iff M_{α} evaluates to tt.

```
TRANSFER THEOREM
For all \Sigma, \mathcal{T}, \mathcal{X}.
For all \varphi exists \hat{\varphi} s.t. for all M \in Terms(\Sigma, \mathcal{T}, \mathcal{X}):
```

 $M\vDash \widehat{\varphi} \quad \text{iff} \quad BT(M)\vDash \varphi$

- Σ is a tree signature
- \mathcal{T} is a finite set of terms
- X is a finite set of λ-variables
- $Terms(\Sigma, \mathcal{T}, \mathcal{X})$: terms over Σ with
 - all subterms having type in \mathcal{T} ,
 - all λ -variables from \mathcal{X} .

Note: no limitation on Y variables.

What it means $M \models \hat{\varphi}$?

M is represented as a graph Graph(M) over the alphabet

$$Talph(\Sigma, \mathcal{T}, \mathcal{X}) = \sum \cup \{ @^{\alpha}, Y^{\alpha}, \vdash^{\alpha} : \alpha \in \mathcal{T} \} \cup \mathcal{X} \cup \\ \{ \lambda^{\alpha \to \beta} x^{\alpha} : \alpha \in \mathcal{T} \land \alpha \to \beta \in \mathcal{T} \land x^{\alpha} \in \mathcal{X} \}.$$

Transfer Thm: For all φ exists $\widehat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \models \widehat{\varphi} \quad \text{iff} \quad BT(M) \models \varphi$

Consequences of the transfer theorem

ONG'S THEOREM

It is decidable if for a given finite term M and MSOL formula φ , $BT(M) \models \varphi$ holds.

Proof: Just test $M \vDash \widehat{\varphi}$.

THE SET OF NORMALIZING TERMS IS MSOL DEFINABLE For a fixed \mathcal{T} and \mathcal{X} there is a formula defining the set of terms $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$ having a normal form.

Proof: Take φ defining the set of finite trees and consider $\hat{\varphi}$.

QBF TO TERMS Every *QBF* formula α can be translated to a term M_{α} :

 $\forall x. \exists y. \ x \land \neg y \quad \mapsto \quad All(\lambda x. \ Exists(\lambda y. \ and \ x \ (neg \ y)))$

 α is true iff $BT(M_{\alpha})$ is the term *true*

Take φ saying that the tree consists only of the root labeled *true*. Consider $\hat{\varphi}$.

 $M_{\alpha} \vDash \widehat{\varphi}$ iff α is true.

If we could construct $\widehat{\varphi}$ without limiting \mathcal{X} then we get collapse of the polynomial hierarchy.

MATCHING WITH RESTRICTED NO OF VARIABLES

For a fixed \mathcal{X} . Given M and K (without fixpoints) decide if there is a substitution σ such that

$$M\sigma =_{\beta} K$$

Substitution Σ can use only terms from $Terms(\Sigma, \mathcal{T}, \mathcal{X})$.

Proof:

- Let shape(N) be MSOL formula defining the set of terms in Terms(Σ, T, X) that can be obtained from N by substitutions.
- Let $\varphi \equiv shape(K)$.
- There is desired σ iff the formula $shape(M) \land \widehat{\varphi}$ is satisfiable.

If there is a solution then there is a finite one.

Synthesis from modules

Given finite λY -terms M_1, \ldots, M_k and φ can one construct a λY term K from these terms such that $BT(M) \vDash \varphi$.

Proof:

- The candidate term K can be described as having the form $(\lambda x_1 \dots x_k, N)M_1, \dots, M_k$ for some term N without constants and λ -abstractions.
- Let ψ be a formula defining terms of this form.
- There is a solution iff the formula $\psi \wedge \widehat{\varphi}$ is satisfiable.

Every model of $\psi \wedge \widehat{\varphi}$ gives a solution.

If there is a solution then there is a regular one, hence a finite one thanks to the presence of Y.

Transfer Thm: For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \models \hat{\varphi} \quad \text{iff} \quad BT(M) \models \varphi$

A sketch of the proof

φ	$BT(M)\vDash\varphi$		$M \vDash F^{-1}(\gamma_{win})$	M
Ţ	iff		iff	\mathbf{J}_F
\mathcal{A}	$BT(M) \in L(\mathcal{A})$		$G(\mathcal{A}, M) \vDash \gamma_{win}$	$G(\mathcal{A}, M)$
	iff		iff	
	Eve wins in $\mathcal{K}(\mathcal{A}, M)$	iff	Eve wins in $G(\mathcal{A}, M)$	

M is in a canonical form if no subterm Y**x**. *N* of *M* has free λ -variables.

$Y\mathbf{x}. N \qquad \mapsto \qquad (Y\mathbf{y}.\lambda x_1 \dots \lambda x_n. N[\mathbf{x} := \mathbf{y}x_1 \dots x_n])x_1 \dots x_n$

KRIVINE MACHINE

• Closure
$$C ::= (N, \rho)$$

• Environment
$$\rho ::= \emptyset \mid \rho[x \mapsto C]$$

Initial term

$$M = (Y\mathbf{x}^{0\to 0}.\lambda y^0.b(\mathbf{x}y)y)(Y\mathbf{z}^0.c\mathbf{z}\mathbf{z})$$

A closure

$$C = (b(\mathbf{x}y^0), [y^0 \leftarrow (Y\mathbf{z}^0.c\mathbf{z}\mathbf{z}, \emptyset)])$$

Expansion of the closure

$$E(C) = b(\mathbf{x}y^0)[y := E(Y\mathbf{z}^0.c\mathbf{z}\mathbf{z}, \emptyset)]$$

KRIVINE MACHINE (2)

A configuration of a Krivine machine is a triple (N, ρ, S) where:

- *N* is a term (a subterm of *M*);
- ρ is an environment defined for all free variables of N;
- S is a stack C₁... C_k, where k and the types of the closures are determined by the type of N: the type of C_i is α_i where the type of N is α₁ → ··· → α_k → 0.

A configuration (N, ρ, S) represents an infinitary term:

$$E((N, \rho, S)) = E(N, \rho)E(C_1)\dots E(C_n)$$

Example: $(b(\mathbf{x}y^0), [y^0 \leftarrow Y\mathbf{z^0}.c\mathbf{zz}], (y^0, [y^0 \leftarrow Y\mathbf{z^0}.c\mathbf{zz}]))$

Fix a canonical term M. Every Y-variable bound at most once in M. So $term(\mathbf{x})$ is the subterm $Y\mathbf{x}.N$ of M. (It has not free λ -vars).

KRIVINE MACHINE

$$\begin{aligned} (\lambda x.N,\rho,(K,\rho')S) &\to (N,\rho[x\mapsto (K,\rho')],S) \\ &(Y\mathbf{x}.N,\rho,S) \to (N,\rho,S) \\ &(NK,\rho,S) \to (N,\rho,(K,\rho)S) \\ &(x,\rho,S) \to (N,\rho',S) \quad \text{where } (N,\rho') = \rho(x) \\ &(\mathbf{x},\rho,S) \to (term(\mathbf{x}),\emptyset,S) \end{aligned}$$

Lemma

Term $E(N, \rho, \bot)$ has a head normal form iff Krivine machine reduces (N, ρ, \bot) to a (b, ρ, S) for some constant $b \neq \Omega$.

Computing Böhm tree

Lemma

Term $E(N, \rho, \bot)$ has a head normal form iff Krivine machine reduces (N, ρ, \bot) to a (b, ρ, S) for some constant $b \neq \Omega$.

Computing Böhm tree (N, ρ, \bot) $(b, \rho', (N_1, \rho_1)(N_2, \rho_2))$ $(\bar{N}_2, \rho_2, \varepsilon)$ $(N_1, \rho_1, \varepsilon)$ $BT(N_1\rho_1)$ $BT(N_2\rho_2)$ $Ktree(N, \rho, \bot) = BT(N\rho)$

Theorem

For every concrete canonical and closed λY -term M of type 0:

BT(M) = KT(M).

All the terms appearing in configurations of the Krivine machine during the computation of KT(M) are subterms of M.

A sketch of the proof

Defining $\mathcal{K}(\mathcal{A}, M)$

The resulting Bohm tree

Defining $\mathcal{K}(\mathcal{A}, M)$

Defining $\mathcal{K}(\mathcal{A}, M)$

Definition of $\mathcal{K}(\mathcal{A}, M)$

- The root is $q^0:(M,\emptyset,\bot)$
- A node $q:(a,\rho,S)$ has a successor $(q_0,q_1):(a,\rho,S)$ for every $(q_0,q_1)\in\delta(q,a).$
- A node $(q_0, q_1) : (a, \rho, (v_0, N_0, \rho_0)(v_1, N_1, \rho_1))$ successors $q_0 : (N_0, \rho_0, \bot)$ and $q_1 : (N_1, \rho_1, \bot)$.

Definition of $\mathcal{K}(\mathcal{A}, M)$

- The root is $q^0:(M,\emptyset,\bot)$
- A node $q:(a,\rho,S)$ has a successor $(q_0,q_1):(a,\rho,S)$ for every $(q_0,q_1)\in\delta(q,a).$
- A node $(q_0, q_1) : (a, \rho, (v_0, N_0, \rho_0)(v_1, N_1, \rho_1))$ successors $q_0 : (N_0, \rho_0, \bot)$ and $q_1 : (N_1, \rho_1, \bot)$.
- A node $q : (\lambda x.N, \rho, CS)$ has a successor $q : (N, \rho[x \mapsto C], S)$.
- A node $q : (Yx.N, \rho, S)$ has a successor $q : (N, \rho, S)$.
- A node $q : (\mathbf{x}, \rho, S)$, for \mathbf{x} a recursive variable, has a successor $q : (term(\mathbf{x}), \emptyset, S)$.

Definition of $\mathcal{K}(\mathcal{A}, M)$

- The root is $q^0:(M,\emptyset,\bot)$
- A node $q:(a,\rho,S)$ has a successor $(q_0,q_1):(a,\rho,S)$ for every $(q_0,q_1)\in\delta(q,a).$
- A node $(q_0, q_1) : (a, \rho, (v_0, N_0, \rho_0)(v_1, N_1, \rho_1))$ successors $q_0 : (N_0, \rho_0, \bot)$ and $q_1 : (N_1, \rho_1, \bot)$.
- A node $q : (\lambda x.N, \rho, CS)$ has a successor $q : (N, \rho[x \mapsto C], S)$.
- A node $q : (Yx.N, \rho, S)$ has a successor $q : (N, \rho, S)$.
- A node $q : (\mathbf{x}, \rho, S)$, for \mathbf{x} a recursive variable, has a successor $q : (term(\mathbf{x}), \emptyset, S)$.
- A node v labeled $q : (NK, \rho, S)$ has a unique successor labeled $q : (N, \rho, (v, K, \rho)S)$. v-closure is created.
- A node v labeled $q : (x, \rho, S)$, for x a λ -variable and $\rho(x) = (v', N, \rho')$, has a unique successor labeled $q : (N, \rho', S)$. Node v uses a v'-closure.

- A node v labeled $q : (NK, \rho, S)$ has a unique successor labeled $q : (N, \rho, (v, K, \rho)S)$. v-closure is created.
- A node v labeled $q : (x, \rho, S)$, for x a λ -variable and $\rho(x) = (v', N, \rho')$, has a unique successor labeled $q : (N, \rho', S)$. Node v uses a v'-closure.

Thm: Eve wins in $\mathcal{K}(\mathcal{A}, M)$ iff \mathcal{A} accepts BT(M).

A sketch of the proof

From $\mathcal{K}(\mathcal{A}, M)$ to $G(\mathcal{A}, M)$

• Residual of type 0 is from $\mathcal{P}(Q \times [d])$.

• Residual of type $0 \to 0$ is from $\mathcal{P}(Q \times [d]) \to \mathcal{P}(Q \times [d])$.

$G(\mathcal{A}, M)$

$$\begin{split} q : (\lambda x.N, \rho, R \cdot S) &\to q : (N, \rho[x \mapsto R], S) \\ q : (a, \rho, R_0 R_1) \to (q_0, q_1) : (a, \rho, R_0 R_1) & \text{for } (q_0, q_1) \in \delta(q, a) \\ q : (Y \mathbf{x}.N, \rho, S) \to q : (N, \rho, S) \\ q : (\mathbf{x}, \rho, S) \to q : (term(\mathbf{x}), \rho, S) & \mathbf{x} \text{ a recursion variable} \end{split}$$

$G(\mathcal{A}, M)$

Eve wins in a position:

- $q:(x,\rho,S)$ if $(q,rk(q)) \in R_x(R_1,\ldots,R_k)$; where $\rho(x) = R_x$ and $S = R_1 \cdots R_k$.
- $(q_0, q_1) : (a, \rho, R_0 R_1)$ if $(q_0, rk(q_0)) \in R_0 \mid_{rk(q_0)}$ and $(q_1, rk(q_1)) \in R_1 \mid_{rk(q_1)}$.

Properties of $G(\mathcal{A}, M)$

Thm: Eve wins in $G(\mathcal{A}, M)$ iff Eve wins in $\mathcal{K}(\mathcal{A}, M)$.

Obs: For every *N* there are finitely many nodes in $G(\mathcal{A}, M)$ containing *N*.

A sketch of the proof

Prop: $G(\mathcal{A}, M)$ is definable from in Graph(M) by means of MSOL-transduction.

TRANSFER THEOREM For all φ exists $\hat{\varphi}$ s.t. for all $M \in Terms(\Sigma, \mathcal{T}, \mathcal{X})$: $M \models \hat{\varphi} \quad \text{iff} \quad BT(M) \models \varphi$