Model checking of higher-order programs and denotational semantics of λ-calculus.

Sylvain Salvati and Igor Waluckiewicz
INRIA, LaBRI, Université de Bordeaux

FREC Ile de Ré
Program schemes model checking

Program \rightarrow Scheme \rightarrow Evaluation tree \rightarrow Semantics

Model checking
verifying finite state properties of evaluation trees
Model checking of higher-order programs and denotational semantics of λ-calculus.

\[
\text{fold } f \ a \ l = \text{if } l = [] \text{ then } a \text{ else } f \ (\text{hd} \ l) \ (\text{fold} \ f \ a \ (\text{tl} \ l))
\]
Higher-order schemes are λY-terms:

Types

\[\mathcal{T} : \quad \alpha, \beta, \gamma ::= 0 \mid (\alpha \rightarrow \beta) \]

λY-calculus

\[\Lambda Y : \quad M^\alpha, N^\beta ::= x^\alpha \mid c^\alpha \mid (\lambda x^\alpha . M^\beta)^{\alpha \rightarrow \beta} \mid (M^{\alpha \rightarrow \beta} N^\alpha)^\beta \]

\[(\beta) \quad (\lambda x . M)N = M[N/x] \]

\[(\eta) \quad \lambda x . Mx = M \text{ when } x \notin \text{fv}(M) \]

\[(\delta) \quad YM = M(YM) \]
Higher-order schemes are λY-terms:

Types

$$\mathcal{T} : \quad \alpha, \beta, \gamma ::= 0 \mid (\alpha \to \beta)$$

λY-calculus

$$\Lambda Y : \quad M^\alpha, N^\beta ::= x^\alpha \mid c^\alpha \mid (\lambda x^\alpha. M^\beta)^{\alpha \to \beta} \mid (M^{\alpha \to \beta} N^\alpha)^{\beta} \mid (YM^{\alpha \to \alpha})^\alpha$$

1. $$(\beta) \quad (\lambda x. M)N = M[N/x]$$
2. $$(\eta) \quad \lambda x. Mx = M \text{ when } x \notin \text{fv}(M)$$
3. $$(\delta) \quad YM = M(YM)$$
Böhm tree for ΛY

Böhm trees are a sort of infinite normal form for ΛY-terms

If M reduces to $\lambda x_1 \ldots x_n.hM_1 \ldots M_n$:

$$BT(M) = \lambda x_1 \ldots x_n.h$$

$$BT(M_1) \cdots BT(M_n)$$

otherwise:

$$BT(M) = \Omega$$
Böhm tree for \(\Lambda Y \)

Böhm trees are a sort of infinite normal form for \(\Lambda Y \)-terms.

If \(M \) reduces to \(\lambda x_1 \ldots x_n.hM_1 \ldots M_n \):

\[
\text{BT}(M) = \begin{cases} \\
\lambda x_1 \ldots x_n.h \\
\text{BT}(M_1) \ldots \\
\text{BT}(M_n) \\
\end{cases}
\]

otherwise:

\[
\text{BT}(M) = \Omega
\]
Böhm tree for ΛY

Böhm trees are a sort of infinite normal form for ΛY-terms

If M reduces to $\lambda x_1 \ldots x_n. h M_1 \ldots M_n$:

$$BT(M) = \lambda x_1 \ldots x_n. h$$

$$BT(M_1) \cdots \quad BT(M_n)$$

otherwise:

$$BT(M) = \Omega$$
Model checking of higher-order programs and denotational semantics of λ-calculus.

\[
\text{fold } f \ a \ l = \text{if } l = [] \text{ then } a \text{ else } f \ (\text{hd } l) \ (\text{fold } f \ a \ (\text{tl } l))
\]

\[
M = Y \lambda \text{fold } f \ a \ l.\text{ite} \ (\text{=}l []) \ a \ (f \ (\text{hd } l) \ (\text{fold } f \ a \ (\text{tl } l)))
\]

$BT(M)$ is:

\[
\begin{align*}
\lambda \ f \ a \ l.\text{ite} = \\
\text{ite} \ a \ f \\
\text{=} \ \\
\text{a} \\
l \\
\text{[]} \\
\text{f} \\
\text{hd} \\
\text{ite} \\
\text{a} \\
\text{f} \\
\text{tl} \\
\text{[]} \\
\text{hd} \\
\text{ite} \\
\text{tl} \\
l \\
\end{align*}
\]
Model checking of higher-order programs and denotational semantics of λ-calculus.

Exploring the limits of effective denotational semantics

Advantages of denotational semantics:

- Characterizes invariants modulo computation
- Plays the role of monoids/algebra in usual formal language
Exploring the limits of *effective* denotational semantics

Effective denotational semantics:

- Interpretation domains that can be effectively constructed at every types
- The interpretation of terms are all computable
- In practice, we use only finite domains of interpretations
- We want to understand the kinds of properties we can express on results produced by ΛY in this context because:
 - It gives simple decidability results
 - It allows to understand in a deeper way the nature of those properties and the kinds of algorithms they require
 - It may yield original domains of interpretation for ΛY
Exploring the limits of *effective* denotational semantics

Effective denotational semantics:

- Interpretation domains that can be effectively constructed at every types
- The interpretation of terms are all computable
- In practice, we use only finite domains of interpretations
- We want to understand the kinds of properties we can express on results produced by \(\Lambda Y \) in this context because:
 - It gives simple decidability results
 - It allows to understand in a deeper way the nature of those properties and the kinds of algorithms they require
 - It may yield original domains of interpretation for \(\Lambda Y \)
Model checking of higher-order programs and denotational semantics of λ-calculus.

Exploring the limits of effective denotational semantics

Effective denotational semantics:

- Interpretation domains that can be effectively constructed at every types
- The interpretation of terms are all computable
- In practice, we use only finite domains of interpretations
- We want to understand the kinds of properties we can express on results produced by ΛY in this context because:
 - It gives simple decidability results
 - It allows to understand in a deeper way the nature of those properties and the kinds of algorithms they require
 - It may yield original domains of interpretation for ΛY
Exploring the limits of effective denotational semantics

Effective denotational semantics:

- Interpretation domains that can be effectively constructed at every types
- The interpretation of terms are all computable
- In practice, we use only finite domains of interpretations
- We want to understand the kinds of properties we can express on results produced by ΛY in this context because:
 - It gives simple decidability results
 - It allows to understand in a deeper way the nature of those properties and the kinds of algorithms they require
 - It may yield original domains of interpretation for ΛY
Exploring the limits of effective denotational semantics

Effective denotational semantics:

- Interpretation domains that can be effectively constructed at every types
- The interpretation of terms are all computable
- In practice, we use only finite domains of interpretations
- We want to understand the kinds of properties we can express on results produced by ΛY in this context because:
 - It gives simple decidability results
 - It allows to understand in a deeper way the nature of those properties and the kinds of algorithms they require
 - It may yield original domains of interpretation for ΛY
Exploring the limits of effective denotational semantics

Effective denotational semantics:

- Interpretation domains that can be effectively constructed at every types
- The interpretation of terms are all computable
- In practice, we use only finite domains of interpretations
- We want to understand the kinds of properties we can express on results produced by ΛY in this context because:
 - It gives simple decidability results
 - It allows to understand in a deeper way the nature of those properties and the kinds of algorithms they require
 - It may yield original domains of interpretation for ΛY
Exploring the limits of effective denotational semantics

Effective denotational semantics:

- Interpretation domains that can be effectively constructed at every types
- The interpretation of terms are all computable
- In practice, we use only finite domains of interpretations
- We want to understand the kinds of properties we can express on results produced by ΛY in this context because:
 - It gives simple decidability results
 - It allows to understand in a deeper way the nature of those properties and the kinds of algorithms they require
 - It may yield original domains of interpretation for ΛY
Exploring the limits of effective denotational semantics

Effective denotational semantics:

- Interpretation domains that can be effectively constructed at every types
- The interpretation of terms are all computable
- In practice, we use only finite domains of interpretations
- We want to understand the kinds of properties we can express on results produced by ΛY in this context because:
 - It gives simple decidability results
 - It allows to understand in a deeper way the nature of those properties and the kinds of algorithms they require
 - It may yield original domains of interpretation for ΛY
Models of ΛY

A model M is $((M_\alpha)_{\alpha \in T}, \bullet, \rho)$ where

- for every $f \in M_{\alpha \rightarrow \beta}$ and $g \in M_\alpha$, $f \bullet g \in M_\beta$.
A model \mathcal{M} is $((\mathcal{M}_\alpha)_{\alpha \in \mathcal{T}}, \bullet, \rho)$ where

- for every $f \in \mathcal{M}_\alpha \rightarrow \beta$ and $g \in \mathcal{M}_\alpha$, $f \bullet g \in \mathcal{M}_\beta$,
- for every $f, f' \in \mathcal{M}_\alpha \rightarrow \beta$, for every $g \in \mathcal{M}_\alpha$
 $f \bullet g = f' \bullet g$ implies $f = f'$

\[\begin{array}{c}
\mathcal{M}_\alpha \\
\mathcal{M}_0 \\
\vdots
\end{array}\]
Model checking of higher-order programs and denotational semantics of \(\lambda\)-calculus.

Models of \(\Lambda Y\)

A model \(\mathcal{M}\) is \((\mathcal{M}_\alpha)_{\alpha \in \mathcal{T}}, \bullet, \rho)\) where

- for every \(f \in \mathcal{M}_{\alpha \rightarrow \beta}\) and \(g \in \mathcal{M}_\alpha\), \(f \bullet g \in \mathcal{M}_\beta\),
- for every \(f, f' \in \mathcal{M}_{\alpha \rightarrow \beta}\), for every \(g \in \mathcal{M}_\alpha\), \(f \bullet g = f' \bullet g\) implies \(f = f'\)
A model \mathcal{M} is $((\mathcal{M}_\alpha)_{\alpha \in \mathcal{T}}, \bullet, \rho)$ where

- for every $f \in \mathcal{M}_\alpha \rightarrow \beta$ and $g \in \mathcal{M}_\alpha$, $f \bullet g \in \mathcal{M}_\beta$,
- for every $f, f' \in \mathcal{M}_\alpha \rightarrow \beta$, for every $g \in \mathcal{M}_\alpha$, $f \bullet g = f' \bullet g$ implies $f = f'$

Axioms of Interpretation
Model checking of higher-order programs and denotational semantics of λ-calculus.

Models of ΛY

A model \mathcal{M} is $((\mathcal{M}_\alpha)_{\alpha \in T}, \bullet, \rho)$ where

- for every $f \in \mathcal{M}_{\alpha \rightarrow \beta}$ and $g \in \mathcal{M}_\alpha$, $f \bullet g \in \mathcal{M}_\beta$,
- for every $f, f' \in \mathcal{M}_{\alpha \rightarrow \beta}$, for every $g \in \mathcal{M}_\alpha$
 $f \bullet g = f' \bullet g$ implies $f = f'$

Axioms of Interpretation

Given $\nu : \text{Var} \rightarrow \mathcal{M}$.

- $\llbracket x^\alpha \rrbracket_\nu^\mathcal{M} = \nu(x^\alpha)$
- $\llbracket c^\alpha \rrbracket_\nu^\mathcal{M} = \rho(c^\alpha)$
- $\llbracket \lambda x^\alpha. M \rrbracket_\nu^\mathcal{M} \bullet a = \llbracket M \rrbracket_\nu^\mathcal{M}[x:=a]$
- $\llbracket M_{\alpha \rightarrow \beta} N^\alpha \rrbracket_\nu^\mathcal{M} = \llbracket M \rrbracket_\nu^\mathcal{M} \bullet \llbracket N \rrbracket_\nu^\mathcal{M}$
- $\llbracket Y \rrbracket_\nu^\mathcal{M} \bullet a = a \bullet (\llbracket Y \rrbracket_\nu^\mathcal{M} \bullet a)$
A model \mathcal{M} is $((\mathcal{M}_\alpha)_{\alpha \in \mathcal{T}}, \bullet, \rho)$ where

- for every $f \in \mathcal{M}_{\alpha \rightarrow \beta}$ and $g \in \mathcal{M}_\alpha$, $f \bullet g \in \mathcal{M}_\beta$,
- for every $f, f' \in \mathcal{M}_{\alpha \rightarrow \beta}$, for every $g \in \mathcal{M}_\alpha$ $f \bullet g = f' \bullet g$ implies $f = f'$

Axioms of Interpretation

Given $\nu : \text{Var} \rightarrow \mathcal{M}$.

- $\llbracket x^\alpha \rrbracket_{\nu} = \nu(x^\alpha)$
- $\llbracket c^\alpha \rrbracket_{\nu} = \rho(c^\alpha)$
- $\llbracket \lambda x^\alpha. M \rrbracket_{\nu} \bullet a = [M]_{\nu[x:=a]}$
- $\llbracket M^{\alpha \rightarrow \beta} N^\alpha \rrbracket_{\nu} = [M]_{\nu} \bullet [N]_{\nu}$
- $\llbracket Y \rrbracket_{\nu} \bullet a = a \bullet ([Y]_{\nu} \bullet a)$
Model checking of higher-order programs and denotational semantics of λ-calculus.

Models of \(\Lambda Y \)

A model \(\mathcal{M} \) is \(((\mathcal{M}_\alpha)_{\alpha \in \mathcal{T}}, \bullet, \rho) \) where

- for every \(f \in \mathcal{M}_{\alpha \rightarrow \beta} \) and \(g \in \mathcal{M}_\alpha \), \(f \bullet g \in \mathcal{M}_\beta \),
- for every \(f, f' \in \mathcal{M}_{\alpha \rightarrow \beta} \), for every \(g \in \mathcal{M}_\alpha \)
 \(f \bullet g = f' \bullet g \) implies \(f = f' \)

Axioms of Interpretation

Given \(\nu : \text{Var} \rightarrow \mathcal{M} \).

- \(\llbracket x^{\alpha} \rrbracket_{\nu}^{\mathcal{M}} = \nu(x^{\alpha}) \)
- \(\llbracket c^{\alpha} \rrbracket_{\nu}^{\mathcal{M}} = \rho(c^{\alpha}) \)
- \(\llbracket \lambda x^{\alpha}. M \rrbracket_{\nu}^{\mathcal{M}} \bullet a = \llbracket M \rrbracket_{\nu[x:=a]}^{\mathcal{M}} \)
- \(\llbracket M^{\alpha \rightarrow \beta} N^{\alpha} \rrbracket_{\nu}^{\mathcal{M}} = \llbracket M \rrbracket_{\nu}^{\mathcal{M}} \bullet \llbracket N \rrbracket_{\nu}^{\mathcal{M}} \)
- \(\llbracket Y \rrbracket_{\nu}^{\mathcal{M}} \bullet a = a \bullet (\llbracket Y \rrbracket_{\nu}^{\mathcal{M}} \bullet a) \)
Models of ΛY

A model M is $((M_\alpha)_{\alpha \in \tau}, \bullet, \rho)$ where

- for every $f \in M_{\alpha \to \beta}$ and $g \in M_{\alpha}$, $f \bullet g \in M_{\beta}$,
- for every $f, f' \in M_{\alpha \to \beta}$, for every $g \in M_{\alpha}$
 $f \bullet g = f' \bullet g$ implies $f = f'$

Axioms of Interpretation

Given $\nu : \text{Var} \to M$.

- $\llbracket x^\alpha \rrbracket_\nu^M = \nu(x^\alpha)$
- $\llbracket c^\alpha \rrbracket_\nu^M = \rho(c^\alpha)$
- $\llbracket \lambda x^\alpha.M \rrbracket_\nu^M \bullet a = \llbracket M \rrbracket_\nu^{M_{\nu[x:=a]}}$
- $\llbracket M^{\alpha \to \beta}N^\alpha \rrbracket_\nu^M = \llbracket M \rrbracket_\nu^M \bullet \llbracket N \rrbracket_\nu^M$
- $\llbracket Y \rrbracket_\nu^M \bullet a = a \bullet (\llbracket Y \rrbracket_\nu^M \bullet a)$
Model checking of higher-order programs and denotational semantics of λ-calculus.

Models of Λ

A model \mathcal{M} is $(\{\mathcal{M}_\alpha\}_{\alpha \in \mathcal{T}}, \bullet, \rho)$ where

- for every $f \in \mathcal{M}_{\alpha \rightarrow \beta}$ and $g \in \mathcal{M}_\alpha$, $f \bullet g \in \mathcal{M}_\beta$,
- for every $f, f' \in \mathcal{M}_{\alpha \rightarrow \beta}$, for every $g \in \mathcal{M}_\alpha$ $f \bullet g = f' \bullet g$ implies $f = f'$

Axioms of Interpretation

Given $\nu : \text{Var} \rightarrow \mathcal{M}$.

- $\llbracket x^\alpha \rrbracket_\nu = \nu(x^\alpha)$
- $\llbracket c^\alpha \rrbracket_\nu = \rho(c^\alpha)$
- $\llbracket \lambda x^\alpha . M \rrbracket_\nu \bullet a = \llbracket M \rrbracket_\nu[x := a]$,
- $\llbracket M^\alpha \rightarrow \beta N^\alpha \rrbracket_\nu = \llbracket M \rrbracket_\nu \bullet \llbracket N \rrbracket_\nu$
- $\llbracket Y \rrbracket_\nu \bullet a = a \bullet (\llbracket Y \rrbracket_\nu \bullet a)$
Models and recognition

Given a model \mathcal{M}, and $A \subseteq \mathcal{M}_\alpha$, A recognizes the language $\{M \mid \llbracket M \rrbracket^\mathcal{M} \in A\}$.

Model checking of higher-order programs and denotational semantics of λ-calculus.
Known properties of models

Theorem (Henkin)

The following are equivalent:

- $M =_{\beta\delta\eta} N$
- for all model M and every valuation ν, $\llbracket M \rrbracket^M_{\nu} = \llbracket N \rrbracket^M_{\nu}$

Theorem (Statman 03)

Whether $M =_{\beta\delta\eta} N$ is undecidable.

Models are in general not effective.
The Monotone Model of λY

The **monotone model** over a finite lattice $(\mathcal{P}(X), \subseteq)$ is

$$D_X = \{(D_\alpha, \sqsubseteq_\alpha)\}_{\alpha \in T}, \rho : \text{Cst} \to D_X$$

where

- $D_o = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,
The Monotone Model of λY

The monotone model over a finite lattice $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D}_X = \{(D_\alpha, \sqsubseteq_\alpha)\}_{A \in \mathcal{T}, \rho} \quad \rho : \text{Cst} \to \mathcal{D}_X$$

where

- $\mathcal{D}_o = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$.

$\mathcal{P}(X)$
The Monotone Model of λY

The monotone model over a finite lattice $(\mathcal{P}(X), \subseteq)$ is

$$D_X = \left\{ (D_\alpha, \sqsubseteq_\alpha) \mid A \in T, \rho \right\} \quad \rho : \text{Cst} \to D_X$$

where

- $D_o = \mathcal{P}(X)$ and $f \subseteq_o g$ iff $f \subseteq g$,
- $D_{\beta \to \gamma} = [D_\beta \to^m D_\gamma]$
 $\sqsubseteq_{\beta \to \gamma} =$ pointwise ordering.

\[
\begin{array}{c}
[D_\beta \to^m D_\gamma] \\
\vdots \\
D_\gamma \\
\vdots \\
D_\beta \\
\vdots \\
\mathcal{P}(X) \to^m \mathcal{P}(X) \\
\mathcal{P}(X)
\end{array}
\]
Model checking of higher-order programs and denotational semantics of λ-calculus.

The Monotone Model of λY

The monotone model over a finite lattice $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D}_X = \{((\mathcal{D}_\alpha, \sqsubseteq_\alpha))_{A \in T}, \rho \} \quad \rho : \text{Cst} \to \mathcal{D}_X$$

where

- $\mathcal{D}_o = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,
- $\mathcal{D}_{\beta \to \gamma} = [\mathcal{D}_\beta \to_m \mathcal{D}_\gamma]$

$\sqsubseteq_{\beta \to \gamma} = \text{pointwise ordering}.$

$$[Y^\alpha]^{\mathcal{D}_X}(a) = \bigwedge_{n \in \mathbb{N}} a^n(\top^\alpha)$$
Known properties of monotone models

Theorem (Statman 82)

The following are equivalent:

- $BT(M) = BT(N)$,
- for every monotone models \mathcal{M} and every valuation ν,

 \[
 \llbracket M \rrbracket_{\mathcal{M}}^{\mathcal{M}} = \llbracket N \rrbracket_{\mathcal{M}}^{\mathcal{M}}.
 \]

Theorem (Loader 00)

Given a monotone model \mathcal{M} and f in \mathcal{M}_α, whether there is M so that $\llbracket M \rrbracket_{\mathcal{M}}^{\mathcal{M}} = f$ is undecidable.
Model checking of higher-order programs and denotational semantics of λ-calculus.

Automata with Trivial Acceptance Condition (TAC) and Böhm trees

Ω-blind TAC: Ω is accepted by any state
Insightful TAC: Ω is accepted only by certain states
Ω-blind TAC and monotone models

Theorem

Given D_X and A, M is recognized by A iff $BT(M)$ is accepted by a boolean combination of automata with $Ω$-blind TAC.
Ω-blind TAC and monotone models

Theorem

Given D_X and A, M is recognized by A iff $BT(M)$ is accepted by a boolean combination of automata with Ω-blind TAC.

Proof \iff

$A = (Q, \delta)$

Take the monotone model M so that $M_0 = \mathcal{P}(Q)$ and

$\begin{align*}
\llbracket a \rrbracket(Q_1, Q_2) &= \{ q \mid \exists (q_1, q_2). (q_1, q_2) \in (Q_1 \times Q_2) \cap \delta(a, q) \} \\
\llbracket c \rrbracket &= \delta(c)
\end{align*}$

$q \in \llbracket M \rrbracket^M$ iff A accepts $BT(M)$ from q.

Model checking of higher-order programs and denotational semantics of λ-calculus.
Ω-blind TAC and monotone models

Theorem

Given D_X and A, M is recognized by A iff $BT(M)$ is accepted by a boolean combination of automata with Ω-blind TAC.

Proof ⇒

Given a monotone model M we define $A_M = (M_0, \delta)$ so that:

$\delta(q, a) = \{(q_1, q_2) \mid q \leq \llbracket a \rrbracket(q_1, q_2)\}$

$\delta(c) = \llbracket c \rrbracket.$

A_M accepts $BT(M)$ from q iff $\llbracket M \rrbracket \geq q.$
Beyond monotone models

We are going to construct models for

- Insightful automata
- weak MSO

Important ingredients

- Logical relations
- Galois connections
Logical relations

Lemma (Fundamental Lemma)

If $[Y]^{M_1} \mathcal{R} [Y]^{M_2}$, $[c]^{M_1} \mathcal{R} [c]^{M_2}$, ν_1 and ν_2 so that for every x, $\nu_1(x) \mathcal{R} \nu_2(x)$ then for every M: $[M]^{\nu_1}_{M_1} \mathcal{R} [M]^{\nu_2}_{M_2}$
Logical relations

Lemma (Fundamental Lemma)

If $[Y]^{\mathcal{M}_1} \mathrel{R} [Y]^{\mathcal{M}_2}$, $[c]^{\mathcal{M}_1} \mathrel{R} [c]^{\mathcal{M}_2}$, ν_1 and ν_2 so that for every x, $\nu_1(x) \mathrel{R} \nu_2(x)$ then for every M: $[M]^{Y}_\nu_1 \mathrel{R} [M]^{Y}_\nu_2$
Logical relations

Lemma (Fundamental Lemma)
If $[Y]^{M_1} R [Y]^{M_2}$, $[c]^{M_1} R [c]^{M_2}$, ν_1 and ν_2 so that for every x, $\nu_1(x) R \nu_2(x)$ then for every M: $[M]^{\nu_1}_{M_1} R [M]^{\nu_2}_{M_2}$
Model checking of higher-order programs and denotational semantics of λ-calculus.

Logical relations

Lemma (Fundamental Lemma)
If $[Y]^{M_1} \mathcal{R} [Y]^{M_2}, [c]^{M_1} \mathcal{R} [c]^{M_2}$, ν_1 and ν_2 so that for every x, $\nu_1(x) \mathcal{R} \nu_2(x)$ then for every M: $[M]^{\nu_1}_{M_1} \mathcal{R} [M]^{\nu_2}_{M_2}$
Logical relations

Lemma (Fundamental Lemma)

If $[Y]_{M_1} \mathcal{R} [Y]_{M_2}$, $[c]_{M_1} \mathcal{R} [c]_{M_2}$, ν_1 and ν_2 so that for every x, $
u_1(x) \mathcal{R} \nu_2(x)$ then for every M: $[M]_{\nu_1} \mathcal{R} [M]_{\nu_2}$
Model checking of higher-order programs and denotational semantics of λ-calculus.

 Logical relations

\[M_1 \quad \xrightarrow{R_0} \quad M_2 \]

\[\xrightarrow{R_\alpha \rightarrow \beta} \]

\[f \quad \xrightarrow{R_\alpha} \quad g \]

\[f' \quad \xrightarrow{R_\beta} \quad g' \]

Lemma (Fundamental Lemma)

If \([Y]^{M_1} \xrightarrow{R} [Y]^{M_2}\), \([c]^{M_1} \xrightarrow{R} [c]^{M_2}\), \(\nu_1\) and \(\nu_2\) so that for every \(x\), \(\nu_1(x) \xrightarrow{R} \nu_2(x)\) then for every \(M: [M]^{M_1} \xrightarrow{R} [M]^{M_2}\).
Logical relations

Lemma (Fundamental Lemma)

If $\llbracket Y \rrbracket^M_1 \mathcal{R} \llbracket Y \rrbracket^M_2$, $\llbracket c \rrbracket^M_1 \mathcal{R} \llbracket c \rrbracket^M_2$, ν_1 and ν_2 so that for every x, $\nu_1(x) \mathcal{R} \nu_2(x)$ then for every M: $\llbracket M \rrbracket^M_1 \mathcal{R} \llbracket M \rrbracket^M_2$
A model for detecting Ω

The monotone model D where Y is interpreted as least fixpoint and which is generated by the lattice:

$$
\begin{array}{c}
\top \\
\downarrow \\
\bot
\end{array}
$$

$$\llbracket a \rrbracket(x, y) = \top$$

is so that $BT(M) = \Omega$ iff $\llbracket M \rrbracket^D = \bot$.
Constructing a model for insightful automata

We want to accept Ω only with state q_0

\[
\begin{array}{c}
\top \\
\downarrow \\
\bot \\
\end{array}
\quad
\begin{array}{c}
\{q_0; q_1\} \\
\{q_0\} \\
\{q_1\} \\
\emptyset \\
\end{array}
\]

\[
[a](x, y) = \top \quad [a](Q, Q') = \{q \mid \delta(a, q) \subseteq Q \times Q'\}
\]

-we need to interpret Ω as $(\bot, \{q_0\})$,

-make that compatible with higher-order and Ψ interpretation
Constructing a model for insightful automata

We want to accept Ω only with state q_0

\[
\begin{array}{c}
\top \\
\downarrow \\
\bot
\end{array} \quad \downarrow \quad \begin{cases}
\{q_0; q_1\} \\
\{q_0\} \\
\emptyset \\
\{q_1\}
\end{cases}
\]

\[
\llbracket a \rrbracket(x, y) = \top \\
\llbracket a \rrbracket(Q, Q') = \{q \mid \delta(a, q) \subseteq Q \times Q'\}
\]

- we need to interpret Ω as $(\bot, \{q_0\})$,
- make that compatible with higher-order and \mathcal{Y} interpretation

\[
\begin{array}{c}
(\top, \{q_0; q_1\}) \\
\downarrow \\
(\top, \{q_0\}) \quad (\top, \{q_1\})
\end{array} \quad \downarrow \quad \begin{cases}
(\bot, \{q_0\}) \\
(\top, \emptyset)
\end{cases}
\]
Model checking of higher-order programs and denotational semantics of \(\lambda \)-calculus.

Constructing a model for insightful automata

We want to accept \(\Omega \) only with state \(q_0 \)

\[
\begin{array}{c}
\top \\
\downarrow \\
\bot
\end{array}
\quad
\begin{array}{c}
\{q_0; q_1\} \\
\{q_0\} \\
\{q_1\} \\
\emptyset
\end{array}
\]

\[
[a](x, y) = \top \\
[a](Q, Q') = \{q | \delta(a, q) \subseteq Q \times Q'\}
\]

- we need to interpret \(\Omega \) as \((\bot, \{q_0\})\),
- make that compatible with higher-order and \(Y \) interpretation
Constructing a model for insightful automata

We want to accept Ω only with state q_0

$$
\begin{array}{c}
\top \\
\downarrow \\
\bot
\end{array}
\quad
\begin{array}{c}
\{q_0; q_1\} \\
\downarrow \\
\{q_0\} \\
\downarrow \\
\emptyset
\end{array}
$$

$\llbracket a \rrbracket(x, y) = \top$

$\llbracket a \rrbracket(Q, Q') = \{q \mid \delta(a, q) \subseteq Q \times Q'\}$

- we need to interpret Ω as $(\bot, \{q_0\})$,
- make that compatible with higher-order and Y interpretation

$(\top, \{q_0; q_1\})$

$(\top, \{q_0\})$

$(\top, \{q_1\})$

$(\bot, \{q_0\})$

(\top, \emptyset)
Model checking of higher-order programs and denotational semantics of λ-calculus.

Going higher-order with a logical relation

\[L_0 = \{ ((d, P), d) \mid (d, P) \in K_0 \}, \]
\[K_{\alpha \rightarrow \beta} = \{ f \in \text{mon}[K_{\alpha} \rightarrow K_{\beta}] \mid \exists d \in D_{\alpha \rightarrow \beta}. \forall (g, e) \in L_{\alpha}. (f(g), d(e)) \in L_{\beta} \}, \]
\[L_{\alpha \rightarrow \beta} = \{ (f, d) \in K_{\alpha \rightarrow \beta} \times D_{\alpha \rightarrow \beta} \mid \forall (g, e) \in L_{\alpha}. (f(g), d(e)) \in L_{\beta} \}. \]
Model checking of higher-order programs and denotational semantics of λ-calculus.

Going higher-order with a logical relation

\[
\begin{align*}
\top & \quad (\top, \{q_0; q_1\}) \\
\bot & \quad (\top, \{q_0\}) \quad (\top, \{q_1\}) \\
& \quad (\bot, \{q_0\}) \quad (\top, \emptyset)
\end{align*}
\]

\[
\begin{align*}
\mathcal{L}_0 &= \{((d, P), d) \mid (d, P) \in \mathcal{K}_0\}, \\
\mathcal{K}_{\alpha \rightarrow \beta} &= \{f \in \text{mon}[\mathcal{K}_\alpha \rightarrow \mathcal{K}_\beta] \mid \exists d \in D_{\alpha \rightarrow \beta}. \forall (g, e) \in \mathcal{L}_\alpha. (f(g), d(e)) \in \mathcal{L}_\beta\}, \\
\mathcal{L}_{\alpha \rightarrow \beta} &= \{(f, d) \in \mathcal{K}_{\alpha \rightarrow \beta} \times D_{\alpha \rightarrow \beta} \mid \forall (g, e) \in \mathcal{L}_\alpha. (f(g), d(e)) \in \mathcal{L}_\beta\}.
\end{align*}
\]
Model checking of higher-order programs and denotational semantics of λ-calculus.

Going higher-order with a logical relation

$$
\begin{align*}
\top & \to \bot
\end{align*}
$$

$$
\begin{align*}
(\top, \{q_0; q_1\}) & \to (\top, \{q_0\}) & (\top, \{q_1\}) \\
(\top, \{q_0\}) & \to (\bot, \{q_0\}) & (\top, \emptyset)
\end{align*}
$$

$$
\begin{align*}
\mathcal{L}_0 &= \{((d, P), d) | (d, P) \in K_0\}, \\
\mathcal{K}_{\alpha \to \beta} &= \{f \in \text{mon}[K_\alpha \to K_\beta] | \exists d \in D_{\alpha \to \beta}. \forall (g, e) \in L_\alpha. (f(g), d(e)) \in L_\beta\}, \\
\mathcal{L}_{\alpha \to \beta} &= \{(f, d) \in \mathcal{K}_{\alpha \to \beta} \times D_{\alpha \to \beta} | \forall (g, e) \in L_\alpha. (f(g), d(e)) \in L_\beta\}.
\end{align*}
$$
Going higher-order with a logical relation

\[\begin{align*}
\top &\to \{q_0; q_1\} \\
\top &\to \{q_0\} \quad \top &\to \{q_1\} \\
\bot &\to \{q_0\} \quad & (\top, \emptyset)
\end{align*} \]

\[\begin{align*}
\mathcal{L}_0 &= \{((d, P), d) \mid (d, P) \in \mathcal{K}_0\}, \\
\mathcal{K}_{\alpha \to \beta} &= \{f \in \text{mon}[\mathcal{K}_\alpha \to \mathcal{K}_\beta] \mid \exists d \in \mathcal{D}_{\alpha \to \beta}. \forall (g, e) \in \mathcal{L}_\alpha. (f(g), d(e)) \in \mathcal{L}_\beta\}, \\
\mathcal{L}_{\alpha \to \beta} &= \{(f, d) \in \mathcal{K}_{\alpha \to \beta} \times \mathcal{D}_{\alpha \to \beta} \mid \forall (g, e) \in \mathcal{L}_\alpha. (f(g), d(e)) \in \mathcal{L}_\beta\}.
\end{align*} \]
A Galois connection

The logical relation \mathcal{L} induces two functors:

- for every f in \mathcal{K}_α there is a unique \bar{f} in \mathcal{D}_α so that $f \mathcal{L}_\alpha \bar{f}$,
- for d in \mathcal{D}_α, let $d^\uparrow = \bigvee \{ f \mid d \mathcal{L}_\alpha f \}$.

Functoriality

- $f(g) = \bar{f}(\bar{g})$ and $f \leq g$ implies $\bar{f} \leq \bar{g}$,
- $d(e)^\uparrow = d^\uparrow(e^\uparrow)$, $d \mathcal{L} d^\uparrow$ and $d \leq e$ implies $d^\uparrow \leq e^\uparrow$.

Galois connection

- $\bar{f} \leq d$ iff $f \leq d^\uparrow$,
- in particular $d^\uparrow = d$
A Galois connection

The logical relation \mathcal{L} induces two functors:

- for every f in \mathcal{K}_α there is a unique \bar{f} in \mathcal{D}_α so that $f \mathcal{L}_\alpha \bar{f}$,
- for d in \mathcal{D}_α, let $d^\uparrow = \bigvee \{ f \mid d \mathcal{L}_\alpha f \}$.

Functoriality

- $\bar{f}(g) = \bar{f}(g)$ and $f \leq g$ implies $\bar{f} \leq \bar{g}$,
- $d(e)^\uparrow = d^\uparrow(e^\uparrow)$, $d \mathcal{L} d^\uparrow$ and $d \leq e$ implies $d^\uparrow \leq e^\uparrow$.

Gallois connection

- $\bar{f} \leq d$ iff $f \leq d^\uparrow$,
- in particular $d^\uparrow = d$
A Galois connection

The logical relation \mathcal{L} induces two functors:

- for every f in \mathcal{K}_α there is a unique \overline{f} in \mathcal{D}_α so that $f \mathcal{L}_\alpha \overline{f}$,
- for d in \mathcal{D}_α, let $d^\uparrow = \bigvee \{ f \mid d \mathcal{L}_\alpha f \}$.

Functoriality

- $\overline{f(g)} = \overline{f(\overline{g})}$ and $f \leq g$ implies $\overline{f} \leq \overline{g}$,
- $d(e)^\uparrow = d^\uparrow(e^\uparrow)$, $d \mathcal{L} d^\uparrow$ and $d \leq e$ implies $d^\uparrow \leq e^\uparrow$.

Galois connection

- $\overline{f} \leq d$ iff $f \leq d^\uparrow$,
- in particular $\overline{d^\uparrow} = d$
Fixpoint

Fixpoint definition

For $f \in \mathcal{K}_{\alpha \rightarrow \alpha}$, we let $\text{Fix}_\alpha(f) = \bigwedge_{n \in \mathbb{N}} f^n(\text{fix}_\alpha(f)^\uparrow)$ with $\text{fix}_\alpha(d) = \bigvee_{n \in \mathbb{N}} d^n(\bot_\alpha)$

Lemma (\mathcal{K} is a model of ΛY)

Fix_α is a fixpoint and is in $\mathcal{K}_{(\alpha \rightarrow \alpha) \rightarrow \alpha}$.
Fixpoint

Fixpoint definition

For $f \in \mathcal{K}_{\alpha \rightarrow \alpha}$, we let $\text{Fix}_\alpha(f) = \bigwedge_{n \in \mathbb{N}} f^n(\text{fix}_\alpha(f)^\uparrow)$ with $\text{fix}_\alpha(d) = \bigvee_{n \in \mathbb{N}} d^n(\perp_{\alpha})$

Lemma (\mathcal{K} is a model of ΛY)

Fix_α is a fixpoint and is in $\mathcal{K}_{(\alpha \rightarrow \alpha) \rightarrow \alpha}$.

Model checking of higher-order programs and denotational semantics of λ-calculus.
\mathcal{K} does the job

Theorem

For a given insightful automaton \mathcal{A}, the construction of \mathcal{K} for \mathcal{A}, is so that if $[M]^\mathcal{K} = (d, Q)$, $BT(M)$ is accepted by \mathcal{A} in state q iff $q \in Q$.
Weak MSO and weak parity automata

A weak parity automaton is $A = (Q, \delta, rk)$ so that:

$rk : Q \mapsto \mathbb{N}, (q_1, q_2) \in \delta(a, q) \text{ implies } rk(q_1) \leq rk(q) \text{ and } rk(q_2) \leq rk(q)$.

A accepts a tree t from state q if there is a run satisfying the usual parity condition.
Idea of the construction

- We construct the model by induction on the parity,
- At each step the model \mathcal{M}_k at base type is $\mathcal{P}(Q_k)$ where $Q_k = \{ q \in Q \mid \text{rk}(q) \leq k \}$,
- and $q \in \llbracket M \rrbracket^{\mathcal{M}_k}$ iff A accepts $BT(M)$ from q.
Basic block: domain extension

Given finite sets X_1 and X_2, so that $X_1 \subseteq X_2$, a model \mathcal{M}_1 so that $\mathcal{M}_1^0 = \mathcal{P}(X_1)$, we define $\mathcal{M}_2 = \text{ext}(\mathcal{M}_1, X_2)$ as:

- $\mathcal{L}^0 = \{(Q, P) \mid P = Q \cap X_1\}$
- $\mathcal{M}_2^0 = \mathcal{P}(X_2)$
- $\mathcal{M}_{2}^{\alpha \rightarrow \beta} = \{f \in \text{mon}[\mathcal{M}_2^\alpha \mapsto \mathcal{M}_2^\beta] \mid \exists d \in \mathcal{M}_1^\alpha. \forall (g, e) \in \mathcal{L}_\alpha^\beta. (f(g), d(e)) \in \mathcal{L}_\beta^\beta\}$
- $\mathcal{L}_{\alpha \rightarrow \beta} = \{(f, d) \mid \forall (g, e) \in \mathcal{L}_\alpha^\beta. (f(g), d(e)) \in \mathcal{L}_\beta^\beta\}$
Two Galois connections

\[\mathcal{L} \text{ induces three functors:} \]

1. for every \(f \) in \(\mathcal{M}_2^\alpha \) there is a unique \(\bar{f} \) in \(\mathcal{M}_1^\alpha \) so that \(f \mathcal{L}^\alpha \bar{f}, \)
2. for \(d \) in \(\mathcal{M}_1^\alpha \), let \(d^\uparrow = \bigvee \{ f \mid d \mathcal{L}^\alpha f \} \),
3. for \(d \) in \(\mathcal{M}_1^\alpha \), let \(d^\downarrow = \bigwedge \{ f \mid d \mathcal{L}^\alpha f \} \).

Functoriality

1. \(\bar{f} (g) = \bar{f} (\bar{g}) \), and \(f \leq g \) implies \(\bar{f} \leq \bar{g} \),
2. \(d(e)^\uparrow = d^\uparrow (e^\uparrow) \), \(d \mathcal{L} d^\uparrow \) and \(d \leq e \) implies \(d^\uparrow \leq e^\uparrow \),
3. \(d(e)^\downarrow = d^\downarrow (e^\downarrow) \), \(d \mathcal{L} d^\downarrow \) and \(d \leq e \) implies \(d^\downarrow \leq e^\downarrow \).

Galois connections

1. \(\bar{f} \leq d \) iff \(f \leq d^\uparrow \),
2. \(d \leq \bar{f} \) iff \(d^\downarrow \leq f \),
3. in particular \(d = \bar{d}^\uparrow = \bar{d}^\downarrow \).
Two Galois connections

\(\mathcal{L} \) induces three functors:

- for every \(f \) in \(\mathcal{M}_2^\alpha \) there is a unique \(\overline{f} \) in \(\mathcal{M}_1^\alpha \) so that \(f \mathcal{L}^\alpha \overline{f} \),
- for \(d \) in \(\mathcal{M}_1^\alpha \), let \(d^\uparrow = \bigvee \{ f \mid d \mathcal{L}^\alpha f \} \),
- for \(d \) in \(\mathcal{M}_1^\alpha \), let \(d^\downarrow = \bigwedge \{ f \mid d \mathcal{L}^\alpha f \} \).

Functoriality

- \(\overline{f(g)} = \overline{f(g)} \), and \(f \leq g \) implies \(\overline{f} \leq \overline{g} \),
- \(d(e)^\uparrow = d^\uparrow(e^\uparrow) \), \(d \mathcal{L} d^\uparrow \) and \(d \leq e \) implies \(d^\uparrow \leq e^\uparrow \),
- \(d(e)^\downarrow = d^\downarrow(e^\downarrow) \), \(d \mathcal{L} d^\downarrow \) and \(d \leq e \) implies \(d^\downarrow \leq e^\downarrow \).

Galois connections

- \(\overline{f} \leq d \) iff \(f \leq d^\uparrow \),
- \(d \leq \overline{f} \) iff \(d^\downarrow \leq f \),
- in particular \(d = d^\uparrow = d^\downarrow \).
Two Galois connections

\(\mathcal{L} \) induces three functors:

- for every \(f \) in \(M_2^\alpha \) there is a unique \(\bar{f} \) in \(M_1^\alpha \) so that \(f \mathcal{L}^\alpha \bar{f} \),
- for \(d \) in \(M_1^\alpha \), let \(d^{\uparrow} = \bigvee \{ f \mid d \mathcal{L}^\alpha f \} \),
- for \(d \) in \(M_1^\alpha \), let \(d^{\downarrow} = \bigwedge \{ f \mid d \mathcal{L}^\alpha f \} \).

Functoriality

- \(\bar{f(g)} = \bar{f}(\bar{g}) \), and \(f \leq g \) implies \(\bar{f} \leq \bar{g} \),
- \(d(e)^{\uparrow} = d^{\uparrow}(e^{\uparrow}) \), \(d \mathcal{L} d^{\uparrow} \) and \(d \leq e \) implies \(d^{\uparrow} \leq e^{\uparrow} \),
- \(d(e)^{\downarrow} = d^{\downarrow}(e^{\downarrow}) \), \(d \mathcal{L} d^{\downarrow} \) and \(d \leq e \) implies \(d^{\downarrow} \leq e^{\downarrow} \).

Galois connections

- \(\bar{f} \leq d \) iff \(f \leq d^{\uparrow} \),
- \(d \leq \bar{f} \) iff \(d^{\downarrow} \leq f \),
- in particular \(d = d^{\uparrow} = d^{\downarrow} \).
Two possible fixpoints

Fixpoints definition

If fix_α is the interpretation of the fixpoint at type α in \mathcal{M}_1, given $f \in \mathcal{M}_2^{\alpha \to \alpha}$ we let:

- $\text{Fix}_0^\alpha(f) = \bigwedge_{n \in \mathbb{N}} f^n(\text{fix}_\alpha(f)^\uparrow)$
- $\text{Fix}_1^\alpha(f) = \bigvee_{n \in \mathbb{N}} f^n(\text{fix}_\alpha(f)^\downarrow)$

Lemma (\mathcal{M}_2 is a model of ΛY)

Fix_0^α and Fix_1^α are fixpoints and are in $\mathcal{M}_2^{(\alpha \to \alpha) \to \alpha}$.

Model checking of higher-order programs and denotational semantics of λ-calculus.
Two possible fixpoints

Fixpoints definition

If fix_α is the interpretation of the fixpoint at type α in \mathcal{M}_1, given $f \in \mathcal{M}_2^{\alpha \rightarrow \alpha}$ we let:

$\begin{align*}
\text{Fix}_\alpha^0(f) &= \bigwedge_{n \in \mathbb{N}} f^n(\text{fix}_\alpha(f)\uparrow) \\
\text{Fix}_\alpha^1(f) &= \bigvee_{n \in \mathbb{N}} f^n(\text{fix}_\alpha(f)\downarrow)
\end{align*}$

Lemma (\mathcal{M}_2 is a model of ΛY)

Fix_α^0 and Fix_α^1 are fixpoints and are in $\mathcal{M}_2^{(\alpha \rightarrow \alpha) \rightarrow \alpha}$.
The model for wMSO

- We let $\mathcal{M}(0)$ be the monotone model generated by $\mathcal{P}(Q_0)$ where $Q_0 = \{ q \in Q \mid \text{rk}(q) = 0 \}$.
- $\mathcal{M}(k + 1) = \text{ext}(\mathcal{M}_k, Q_{k+1})$ where $Q_{k+1} = \{ q \in Q \mid \text{rk}(q) \leq k + 1 \}$, and $\lfloor Y \rfloor^{\mathcal{M}(k+1)} = \text{Fix}^p$ where $p \equiv k + 1[2]$.

Theorem

Given $q \in Q_k$, the following are equivalent:

- $q \in \lfloor \mathcal{M} \rfloor^\mathcal{M}_k$,
- A accepts $BT(M)$ from the state q.