Equations for
the polynomial closure

Mário J. J. Branco1 Jean-Éric Pin2

1CAUL, Univ. de Lisboa, Portugal

2LIAFA, CNRS and Univ. Paris Diderot, France

Île de Ré - May 9, 2011
Classes of languages
Classes of languages

Variety of languages \mathcal{V}:

$$
A \quad \longrightarrow \quad (A^*)\mathcal{V}
$$

alphabet subset of $\text{Rat}(A^*)$

such that

1. $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
2. $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L, La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
3. if $\varphi: A^* \rightarrow B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$
Classes of languages

Variety of languages \mathcal{V}:

$$A \mapsto (A^*)\mathcal{V}$$

alphabet subset of $\text{Rat}(A^*)$

such that

1. $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
2. $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L, La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
3. if $\varphi: A^* \rightarrow B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$
Classes of languages

Variety of languages \mathcal{V}:

$$A \rightarrow (A^*)\mathcal{V}$$

alphabet subset of $\text{Rat}(A^*)$

such that

1. $(A^*)\mathcal{V}$ is closed under finite union, and finite intersection.
2. $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L, La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
3. if $\varphi: A^* \rightarrow B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$
Classes of languages

Positive variety of languages \mathcal{V}:

\[
A \quad \longrightarrow \quad (A^*)\mathcal{V}
\]

alphabet \quad subset of Rat(A^*)

such that

1. $(A^*)\mathcal{V}$ is closed under finite union, and finite intersection.
2. $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L, La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
3. if $\varphi: A^* \rightarrow B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$.
Classes of languages

Positive variety of languages \(\mathcal{V} \):

\[
A \rightarrow (A^*)\mathcal{V}
\]

alphabet \(\subseteq \text{Rat}(A^*) \)

such that

1. \((A^*)\mathcal{V}\) is closed under finite union, and finite intersection.
2. \((A^*)\mathcal{V}\) is closed under quotients: \(a^{-1}L, La^{-1} \in (A^*)\mathcal{V} \), for any \(L \in (A^*)\mathcal{V} \).
3. If \(\varphi: A^* \rightarrow B^* \) is a morphism and \(L \in (B^*)\mathcal{V} \), then \(L\varphi^{-1} \in (A^*)\mathcal{V} \).

How to characterize algebraically the classes \(\mathcal{V} \) satisfying the following?

1. \((A^*)\mathcal{V}\) is closed under finite union and finite intersection.
2. \((A^*)\mathcal{V}\) is closed under quotients: \(a^{-1}L, La^{-1} \in (A^*)\mathcal{V} \), for any \(L \in (A^*)\mathcal{V} \).
Classes of languages
varieties of languages \leftrightarrow M – varieties of identities $u = v$
Classes of languages

varieties of languages \leftrightarrow M – varieties
identities $u = v$

positive varieties of languages \leftrightarrow OM – varieties
identities $u \leq v$
Classes of languages

varieties of languages $\leftrightarrow M$ – varieties identities $u = v$

positive varieties of languages $\leftrightarrow OM$ – varieties identities $u \leq v$

How to characterize algebraically the classes \mathcal{V} satisfying the following?

1. $(A^*) \mathcal{V}$ is closed under finite union and finite intersection.
2. $(A^*) \mathcal{V}$ is closed under quotients: $a^{-1}L, La^{-1} \in (A^*) \mathcal{V}$, for any $L \in (A^*) \mathcal{V}$.
Lattice of language closed under quotients
Lattice of language closed under quotients

How to characterize algebraically the classes \mathcal{V} satisfying the following?

1. $(A^*)\mathcal{V}$ is closed under finite union and finite intersection.
2. $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L, La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
Lattice of language closed under quotients

How to characterize algebraically the classes \mathcal{V} satisfying the following?

1. $(A^*)\mathcal{V}$ is closed under finite union and finite intersection.
2. $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L, La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.

Lattice of languages of A^*: set of languages of A^* closed under finite union and finite intersection.
Lattice of language closed under quotients

How to characterize algebraically the classes \mathcal{V} satisfying the following?

1. $(A^*)\mathcal{V}$ is closed under finite union and finite intersection.
2. $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L, La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.

Lattice of languages of A^*: set of languages of A^* closed under finite union and finite intersection.

Theorem (Gehrke, Grigorieff, Pin)

A set \mathcal{L} of languages of A^* is a lattice of languages closed under quotients if and only if, for some set Σ of equations of the form $u \leq v$, with $u, v \in \hat{A}^*$, \mathcal{L} is the set of the languages of A^* that satisfy all equations of Σ.
The polynomial closure $\text{Pol}(\mathcal{L})$ of a set of languages \mathcal{L} of A^* is the set of languages that are finite unions of marked products of the form $L_0 a_1 L_1 \cdots a_n L_n$, where the a_i are letters and the L_i are in \mathcal{L}.
The polynomial closure $\text{Pol}(\mathcal{L})$ of a set of languages \mathcal{L} of A^* is the set of languages that are finite unions of marked products of the form $L_0a_1L_1 \cdots a_nL_n$, where the a_i are letters and the L_i are in \mathcal{L}.

Examples:

The polynomial closure of the set of languages of the form F or F^*, where F is a finite language is formed by the languages that have star-height one.

The polynomial closure of $\{\emptyset, A^*\}$ is formed by the shuffle ideals of A^* ($u \in L, \ v \in A^* \implies u \sqcup \sqcup v \subseteq L$).
$L_0, L_1, \ldots, L_n \subseteq A^*$, \quad a_1, \ldots, a_n \in A$

$L = L_0 a_1 L_1 \cdots a_n L_n$
Polynomial closure

\[L_0, L_1, \ldots, L_n \subseteq A^*, \quad a_1, \ldots, a_n \in A \]

\[L = L_0 a_1 L_1 \cdots a_n L_n \]

Syntactic morphisms:

\[\eta_i : A^* \rightarrow M(L_i), \quad \mu : A^* \rightarrow M(L) \]

Consider the morphism

\[\eta : A^* \rightarrow M(L_0) \times \cdots \times M(L_n) \]

\[u \mapsto (\eta_0(u), \ldots, \eta_n(u)) \]

and the relational morphism

\[\tau = \eta \mu^{-1} : M(L) \rightarrow M(L_0) \times \cdots \times M(L_n) \]
Proposition (Pin and Weil)

For each idempotent \(e \in M(L_0) \times \cdots \times M(L_n) \), the ordered semigroup \(\tau^{-1}(e) \) satisfies the identity \(x^\omega y x^\omega \leq x^\omega \).
Proposition (Pin and Weil)

For each idempotent \(e \in M(L_0) \times \cdots \times M(L_n) \), the ordered semigroup \(\tau^{-1}(e) \) satisfies the identity \(x^\omega y x^\omega \leq x^\omega \).

Theorem (Pin and Weil)

Let \(\mathbb{V} \) be an \(M \)-variety and let \(\mathcal{V} \) be the corresponding variety of languages. Then \(\text{Pol}(\mathcal{V}) \) is a positive variety of languages and the corresponding \(OM \)-variety is the Malcev product \(\llbracket x^\omega y x^\omega \leq x^\omega \rrbracket M \odot \mathbb{V} \).

Theorem (Pin and Weil)

\(\llbracket x^\omega y x^\omega \leq x^\omega \rrbracket M \odot \mathbb{V} \) is defined by the identities \(x^\omega y x^\omega \leq x^\omega \), where \(x, y \in \hat{A}^* \) are such that the identity \(y = x = x^2 \) holds in \(\mathbb{V} \).
Polynomial closure

Let \mathcal{L} be a set of languages of A^*.

$\text{Pol}(\mathcal{L})$:
Polynomial closure

Let \mathcal{L} be a set of languages of A^*.

$\text{Pol}(\mathcal{L})$: the set of languages that are finite union of $L_0a_1L_1 \cdots a_nL_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_j \in A$.

$\Sigma(\mathcal{L})$: the set of equations of the form $x^\omega y x^\omega \leq x^\omega$, where $x, y \in \hat{A}^*$ are such that the equations $y \leq x$ and $x = x^2$ are satisfied by \mathcal{L}.
Polynomial closure

Let \mathcal{L} be a set of languages of A^*.

Pol(\mathcal{L}): the set of languages that are finite union of $L_0a_1L_1 \cdots a_nL_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_j \in A$.

$\Sigma(\mathcal{L})$: the set of equations of the form $x^\omega yx^\omega \leq x^\omega$, where $x, y \in \hat{A}^*$ are such that the equations $y \leq x$ and $x = x^2$ are satisfied by \mathcal{L}.

Theorem (Branco and Pin)

If \mathcal{L} is a lattice closed under quotients, then $\text{Pol}(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.
Polynomial closure

Let \mathcal{L} be a set of languages of A^*.

$\text{Pol}(\mathcal{L})$: the set of languages that are finite union of $L_0a_1L_1 \cdots a_nL_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_j \in A$.

$\Sigma(\mathcal{L})$: the set of equations of the form $x^\omega y x^\omega \leq x^\omega$, where $x, y \in \hat{A}^*$ are such that the equations $y \leq x$ and $x = x^2$ are satisfied by \mathcal{L}.

Theorem (Branco and Pin)

If \mathcal{L} is a lattice closed under quotients, then $\text{Pol}(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.

Idea of proof: later
An example

A regular language is slender iff it is a finite union of languages of the form $u_0 v^* u_1$, where u_0, v, u_1 are words.

Regular slender or full languages of A^* form a lattice of closed under quotients S.

The languages of $\text{Pol}(S)$ are finite unions of languages of the form $L_0a_1L_1\cdots a_nL_n$, where the a_i are letters and the L_i are languages of the form A^* or u^* for some word u.

Theorem

A regular language of A^* belongs to $\text{Pol}(S)$ iff it satisfies the equations of the form

$$(x^\omega y^\omega)^\omega z(x^\omega y^\omega)^\omega \leq (x^\omega y^\omega)^\omega$$

where $z \in A^*$ and $x, y \in A^+$ and $i(x) \neq i(y)$.
An example

Let $L \subseteq A^*$ regular.

$\eta : A^* \rightarrow M(L)$ syntactic morphism.

By last theorem, $L \in \text{Pol}(S)$ iff for any $z \in A^*$ and $x, y \in A^+$ s.t. $i(x) \neq i(y)$,

$$(\hat{\eta}(x)^{\omega} \hat{\eta}(y)^{\omega})^{\omega} \hat{\eta}(z)(\hat{\eta}(x)^{\omega} \hat{\eta}(y)^{\omega})^{\omega} \leq (\hat{\eta}(x)^{\omega} \hat{\eta}(y)^{\omega})^{\omega}.$$

Let

$$F = \bigcup_{a, b \in A, a \neq b} \eta(a)M(L) \times M(L)\eta(b)$$

Then

$L \in \text{Pol}(S)$ iff the property $(s^{\omega}t^{\omega})^{\omega} r(s^{\omega}t^{\omega})^{\omega} \leq (s^{\omega}t^{\omega})^{\omega}$ holds for all $(s, t) \in F$, $r \in M(L)$.

Thus we may conclude:

Proposition

There is an algorithm to decide whether a given regular language belongs to Pol(S).
Recall the main theorem:

Theorem (Branco and Pin)

If \(\mathcal{L} \) is a lattice closed under quotients, then \(\text{Pol}(\mathcal{L}) \) is defined by \(\Sigma(\mathcal{L}) \).
Recall the main theorem:

Theorem (Branco and Pin)

*If \mathcal{L} is a lattice closed under quotients, then $\text{Pol}(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.***

Proposition

*If \mathcal{L} is a lattice of languages, then $\text{Pol}(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.***
Recall the main theorem:

Theorem (Branco and Pin)

*If L is a lattice closed under quotients, then $\text{Pol}(L)$ is defined by $\Sigma(L)$.***

Proposition

*If L is a lattice of languages, then $\text{Pol}(L)$ satisfies $\Sigma(L)$.***

Easier part
Main theorem: idea of proof

Recall:

$\Sigma(\mathcal{L})$: the set of equations of the form $x^\omega y x^\omega \leq x^\omega$, where $x, y \in \hat{A}^*$ are such that the equations $y \leq x$ and $x = x^2$ are satisfied by \mathcal{L}.
Main theorem: idea of proof

Recall:

$\Sigma(L)$: the set of equations of the form $x^\omega y x^\omega \leq x^\omega$, where $x, y \in \widehat{A}^*$ are such that the equations $y \leq x$ and $x = x^2$ are satisfied by L.

$L \subseteq A^*$ regular.

Define

$$E_L = \left\{ (x, y) \in \widehat{A}^* \times \widehat{A}^* \mid L \text{ satisfies } y \leq x \text{ and } x = x^2 \right\}$$

$$F_L = \left\{ (x, y) \in \widehat{A}^* \times \widehat{A}^* \mid L \text{ satisfies } x^\omega y x^\omega \leq x^\omega \right\}$$
Recall:

$\Sigma(L)$: the set of equations of the form $x^\omega y x^\omega \leq x^\omega$, where $x, y \in \hat{A}^*$ are such that the equations $y \leq x$ and $x = x^2$ are satisfied by L.

$L \subseteq A^*$ regular.

Define

$$E_L = \left\{(x, y) \in \hat{A}^* \times \hat{A}^* \mid L \text{ satisfies } y \leq x \text{ and } x = x^2\right\}$$

$$F_L = \left\{(x, y) \in \hat{A}^* \times \hat{A}^* \mid L \text{ satisfies } x^\omega y x^\omega \leq x^\omega\right\}$$

Proposition

E_L and F_L are clopen in $\hat{A}^* \times \hat{A}^*$.
Main theorem: idea of proof
Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^*. TFAE:

1. K satisfies $\Sigma(\mathcal{L})$.
Main theorem: idea of proof

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^*. TFAE:

1. K satisfies $\Sigma(\mathcal{L})$.
2. The set $\{F_K\} \cup \{E_L \mid L \in \mathcal{L}\}$ is an open cover of $\widehat{A^*} \times \widehat{A^*}$.
Main theorem: idea of proof

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^*. TFAE:

1. K satisfies $\Sigma(\mathcal{L})$.
2. The set $\{F_K\} \cup \{E_L \mid L \in \mathcal{L}\}$ is an open cover of $\hat{A}^* \times \hat{A}^*$.

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^*. If K satisfies $\Sigma(\mathcal{L})$, there exists a finite subset \mathcal{F} of \mathcal{L} such that K satisfies $\Sigma(\mathcal{F})$.
Main theorem: idea of proof

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^*. TFAE:

1. K satisfies $\Sigma(\mathcal{L})$.
2. The set $\{F_K\} \cup \{E_L \mid L \in \mathcal{L}\}$ is an open cover of $\widehat{A}^* \times \widehat{A}^*$.

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^*. If K satisfies $\Sigma(\mathcal{L})$, there exists a finite subset \mathcal{F} of \mathcal{L} such that K satisfies $\Sigma(\mathcal{F})$.
Main theorem: idea of proof

An important ingredient:

Simon’s theorem on factorization forests
Main theorem: idea of proof

An important ingredient:

Simon’s theorem on factorization forests

Board

Factorization forest: . . .

.:.