MOTIVATION

- Understanding tree formalisms
- To construct reasonable fragments of XPATH with data
- To simplify formulas in verification.
Potthof’s example

Exists a maximal path of odd length

- “There is a maximal path of odd length” is definable in $\text{FO}[\leq, \text{left}, \text{right}]$ over ordered binary trees.
Potthof’s example: cont.

When the parity of depths of all leaves is the same

\[(\text{left} \cdot \text{right})^* \text{left path}.\]

When this is not the case

Find a maximal depth node where the property fails.

The formula expressing the property is not of the form “there is a path”.
Boolean expressions

Positive boolean expressions

Let $A = \{\lor, \land, 0, 1\}$, and consider the set of ordered binary trees that evaluate to 1 (and are well-formed).

![Binary tree diagram]

Theorem (Heuter, Potthoff)

The above language is not definable in chain logic. (This language is aperiodic.)
Words and their structure

- Concatenation is a privileged operation on A^*.
- The set of words A^* with concatenation forms a monoid.

Recognizability: $\alpha : A^* \rightarrow S$ and $F \subseteq S$ such that $L = \alpha^{-1}(F)$.

Syntactic monoid of L: Smallest monoid recognizing L.

Aperiodicity

A semigroup $\langle S, \cdot \rangle$ is aperiodic iff there is n such that $s^n = s^{n+1}$ for all $s \in S$.

Theorem (Schützenberger, McNaughton & Papert)

A regular language is FO definable iff its syntactic monoid is aperiodic.
A FOL definable language

Let $L = (ab)^* c\Sigma^*$. It is first-order definable.

The minimal automaton for L

![Automaton diagram](image)

Remarks

- The aperiodicity property is not that visible from the structure of the automaton.
- Every property of syntactic algebra is also a property of the minimal automaton. The converse is not true.
- This is good, as long as we know that properties of interest are properties of syntactic algebras.
What algebra gives us

- The structure gives new notions: idempotent, Green relations, . . .
- (pseudo) varieties. Limit the search space.
- Krohn-Rhodes decomposition theorem: A group free semigroup is a divisor of an iterated wreath product of U_2.
 - This implies LTL is equivalent to FO over words.
 - Decidability of Until-hierarchy for LTL [Therien, Wilke].
WHAT STRUCTURE FOR TREES

- A-algebras
- Pre-clones
- Forest algebras
- Seminearrings.
A-algebras

Ranked alphabet

\[A_0, A_1, A_2, \ldots \]

Free structure: ranked trees

A letter in a node determines the number of children. These children are numbered.

Free \(A \)-algebra: trees with operations of adding a letter on a top.

A-algebra

\[\langle S, a_0, b_2, c_3 \ldots \rangle \]

Recognition

\[\varphi : \text{Free}(A) \rightarrow S, \text{ S-finite, } L = \varphi^{-1}(F) \]
Recognition

\(\varphi : \text{Free}(A) \rightarrow S, \ S\text{-finite}, \ L = \varphi^{-1}(F) \)

Syntactic algebra is the minimal leaves-to-root automaton.
Preclones

Ranked alphabet

\[A_0, A_1, A_2, \ldots, id \in A_1. \]

Free structure: multi-contexts

Obtained from alphabet by substitution.

- \(AM_0 \) trees
- \(AM_1 \) contexts with one variable
- \(\ldots \)

Operation of substitution of multicontexts into multicontext.

Pre-clone

\[S = \langle \{ S_i \}_{i=0,1,\ldots}, \{ \cdot \}_J, 1 \rangle \]

Recognition

\[\varphi : MA \rightarrow S, S \text{ finitary}, F \subseteq S_0, L = \varphi^{-1}(F) \]
Forest algebra

Unranked alphabet A.

Free structure
- Forests over unranked alphabet
- Forest contexts with one hole.
- Operations:
 - concatenation of forests,
 - putting forest or a context into a hole of a context.

Forest algebra $\langle H, V, \text{act}, \text{in}_l, \text{in}_r \rangle$

- Two monoids: H and V. We denote their operations by $+$ and \cdot, respectively.
- An action $\text{act} : H \times V \rightarrow H$. We write vh for $\text{act}(h,v)$.
- Two operations $\text{in}_l, \text{in}_r : H \rightarrow V$.
- Axioms:
 - **ACTION** $(v \cdot w)h = v(wh)$;
 - **INSERTION** $\text{in}_l(g)h = g + h$ and $\text{in}_r(g)h = h + g$;
 - **FAITHFULNESS** for every two distinct $v, w \in V$ there is $h \in H$ with $vh \neq wh$;

Recognizability

$\varphi : A^\Delta \rightarrow \langle H, V, \text{act}, \text{in}_l, \text{in}_r \rangle$
Seminearrings

Unranked alphabet: A

Free structure
- Forest multicontexts
- Operations:
 - Horizontal concatenation
 - Vertical composition: simultaneous substitution.

Seminearrings: $\langle N, 0, \Box, +, \cdot \rangle$

Axioms:

\[(p + q) \cdot r = p \cdot r + q \cdot r\]

\[0 \cdot p = 0\]

...

Recognizability

$\varphi: A^{\nu} \rightarrow \langle N, 0, \Box, +, \cdot \rangle$
Seminearrings forget more than forest algebras

“There is a b”

- 0: “hopeless” multicontexts: arity 0 without an b.
- \Box: “possible” multicontexts: arity at least 1 without an b.
- ∞: “good” multicontexts: with a.

“Some node has label b and no ancestor with label c”

- 0: “hopeless” multicontexts.
- \Box: “possible” multicontexts: some hole with no c ancestors.
- ∞: “good” multicontexts: in the language.

Only the first of the two languages is in EF.

Solution

Instead of properties of a seminearring, one looks at the properties of morphisms $\varphi : A^\nu \to \langle N, 0, \Box, +, \cdot \rangle$.
VARIETIES OF FOREST ALGEBRAS
Varieties of forest algebras

Pseudovariety

A pseudovariety of finite forest algebras is a collection \mathcal{V} of finite forest algebras with the following properties:

- \mathcal{V} is closed under binary product.
 If $(H, V), (G, U) \in \mathcal{V}$ then $(H, V) \times (G, U) \in \mathcal{V}$.
- \mathcal{V} is closed under faithful quotients of homomorphic images.
 If $(H, V) \in \mathcal{V}$ and (H', V') is its homomorphic image, then $faith(H', V') \in \mathcal{V}$.
- \mathcal{V} is closed under faithful quotients of subalgebras.
 If $(H, V) \in \mathcal{V}$ and (H', V') is its subalgebra then $faith(H', V') \in \mathcal{V}$.

Theorem

If \mathcal{V} is a pseudovariety iff it is ultimately defined by some set of equations.
First correspondence theorem

Varieties of forest languages

Let \mathcal{V} be a variety of algebras. For every finite alphabet A define

$$\mathcal{V}(A) = \{ L \subseteq H_A : (H^L, V^L) \in \mathcal{V} \}.$$

We call \mathcal{V} the variety of forest languages associated to \mathcal{V}, and write

$$\mathcal{V} \mapsto \mathcal{V}.$$

Theorem

The mapping $\mathcal{V} \mapsto \mathcal{V}$ is one-to-one.
A prefix operator

If L is a language of A-forests and p is an A-context then we define

$$p^{-1}L = \{ t : pt \in L \}.$$

Theorem

Let \mathcal{W} be an operator assigning to each A a family $\mathcal{W}(A)$ of A-languages. \mathcal{W} is a variety of languages if and only if the following hold:

1. every $\mathcal{W}(A)$ is closed under boolean operations.
2. if $L \in \mathcal{W}(A)$ and p is an A-context then $p^{-1}L \in \mathcal{W}(A)$.
3. if $(\alpha, \beta) : A^\Delta \to B^\Delta$ is a homomorphism, and $L \in \mathcal{W}(B)$, then $\alpha^{-1}(L) \in \mathcal{W}(A)$.

Igor Walukiewicz (LaBRI)
FREC 2010
October 2010 18 / 35
Consequences

Fact

$\text{FO}[\leq]$ is a variety of forest languages.

Fact

Chain logic is a variety of forest languages.

Remark

$\text{FO}[\text{succ}]$ is not a variety of forest languages. Closure under inverse homomorphic images fails.
WREATH PRODUCT
Wreath product

Wreath product: $(H_1, V_1) \circ (H_2, V_2)$

The product is $(H_1 \times H_2, V_1 \times V_2^{H_2})$:

- $(v_1, f)(h_1, h_2) = (v_1 h_1, f(h_1)v_2)$
- $(v, f) \cdot (v', f') = (vv', f'')$ where $f''(h) = (f(v'h)) \cdot (f'(h))$

- This is a standard definition of wreath product of transformation semigroups (but with actions on the left).
- All axioms are satisfied.
Theorem

For every pair
\[\alpha : A^\Delta \to (G, W) \quad \beta : (A \times G)^\Delta \to (H, V) \]
there is a morphism into \((G, W) \circ (H, V)\) that is equal on forest to the sequential composition
\[\alpha \otimes \beta : H_A \to G \times H \]
Every morphism \(A^\Delta \to (G, W) \circ (H, V)\) is realized this way.
Characterisations of language classes

$TL[\mathcal{A}]$

$TL[\mathcal{A}]$ is the class of languages recognized by iterated product of algebras from \mathcal{A}.

Theorem

We have the following:

- EF is $TL[\mathcal{U}_1]$
- CLT is $TL[\mathcal{U}_2]$
- CLT* is $TL[\text{distributive aperiodic algebras}]$
- PDL is $TL[\text{distributive algebras}]$
- FO[\leq] is $TL[\text{aperiodic path algebras}]$
- chain logic is $TL[\text{path algebras}]$
Classes of algebras

\[\mathcal{U}_1 = (\{0, \infty\}, \{1, 0\}) \]

\[0 \cdot \infty = 0 \cdot 0 = \infty. \text{ Syntactic algebra of “some node with } b \text{”}. \]

\[\mathcal{U}_2 = (\{0, \infty\}, \{1, c_0, c_\infty\}) \]

\[C_h \cdot h' = h. \text{ Syntactic monoid of “some node with } b \text{ with ancestors only } c \text{”}. \]

Distributive algebras

- \(H \) commutative
- Action is distributive: \(v(h_1 + h_2) = vh_1 + vh_2 \)

Path algebras

- \(H \) aperiodic and commutative,
- \(vg + vh = v(g + h) + v0 \)
- \(u(g + h) = u(g + uh) \text{ if } u = u^2 \).
Infinite base

A is a base for L if $L = TL(A)$

If L has a finite base then $L = TL((H, V))$.

Theorem

None of the language classes CTL*, FO[≤], PDL, or graded PDL has a finite base.

Case of aperiodic V

If a logic can define there is a path labelled $(a^n b)^* c$ then it does not have finite base.

V has periods

Languages there is a path $a^m b$ with m a multiple of a fixed prime.
Decompositions

Theorem

A forest algebra divides and iterated wreath product of copies of U_1 iff H is idempotent and commutative and $vh + h = vh$.

This is a characterisation of EF.
DEFINABILITY PROBLEM
The definability problem

Definition

Definability problem for a logic \mathcal{L} is to decide if the language of a given automaton can be defined in \mathcal{L}.

What logics are known to have decidable definability problem

- Modal logic.
- EX, EF, EF+EX. [Bojańczyk & W.]
- FO[succ]. [Benedikt & Segoufin]
- EF+F^{-1}. [Bojańczyk]
- Boolean closure of the Σ_1 fragment of FO[≤_H, ≤_V] (an extension of Simon’s Theorem). [Bojańczyk & Segoufin & Straubing]
- Δ_2 fragment of FO[≤_H, ≤_V]. [Bojańczyk & Segoufin]
Confusions

Horizontal confusion

(H, V) has *horizontal confusion* if there is a multicontext p and a set $G \subseteq H$ with $|G| > 1$ s.t. for every $g \in G$ and $x \in \text{holes}(p)$:

$$G \subseteq p[g/x][G].$$

Example: Boolean expressions

The diagram shows a Boolean expression tree with a root symbol \land, two subtrees \lor and \lor, and leaves representing variables.

Theorem

Chain logic algebras do not have horizontal confusion
Vertical confusion

\((H, V)\) has *vertical confusion* if there is a multicontext \(p\) and a set \(\{g_0, \ldots, g_{k-1}\} \subseteq H\) with \(k > 1\) s.t. for every \(i = 0, \ldots, k - 1\):

\[
p[g_i] = g_j \text{ where } j = (i + 1) \pmod{k}.
\]

Example: Forests with a maximal path in \((ab)^*\)

Example: Binary trees with even path length

Theorem

- CTL algebras do not have vertical confusion.
- FO[\(\leq\)] algebras do not have vertical confusion for *uniform* multicontexts.
Comparing counting and non-counting logics

- CTL\(^*\) cannot count the number of successors. Neither can PDL.
- FO\([-\leq]\) is a counting correspondent of CTL\(^*\). Chain logics is that of PDL.

Theorem

Let \((H, V), (H_j, V_j), j = 1, \ldots, k\) be such that

- \(H\) is idempotent and commutative,
- each \((H_i, V_i)\) is a path algebra,
- \((H, V)\) divides \((H_1, V_1) \circ \cdots \circ (H_k, V_k)\).

then

- each \((H_i, V_i)\) has a **distributive** homomorphic image \((H'_i, V'_i)\)
- \((H, V)\) divides \((H'_1, V'_1) \circ \cdots \circ (H'_k, V'_k)\).
Reductions between different decision problems

UHV: Given a regular language \(L \) of unranked trees, decide if \(L \) can be defined in \(FO[\leq H, \leq V] \).

\(\uparrow \)

BHV: Given a regular language \(L \) of binary trees, decide if \(L \) can be defined in \(FO[\leq H, \leq V] \).

\(\downarrow \)

BV: Given a regular language \(L \) of binary trees, decide if \(L \) can be defined in \(FO[\leq V] \).

\(\downarrow \)

UV: Given a regular language \(L \) of unranked trees, decide if \(L \) can be defined in \(FO[\leq V] \).

\(\uparrow \)

CTL*: Given a regular language \(L \) of unranked trees, decide if \(L \) can be defined in CTL*.

Remark

If there is no vertical order than the problem is easy.
A tree decomposes into a “set of linear orders”.
ORDER INVARIANCE
We say that a property of trees is *order invariant* iff it does not depend on the horizontal order.
We say that a property of trees is **order invariant** iff it does not depend on the horizontal order.

A logic \mathcal{L} is order invariant if every order invariant property definable in \mathcal{L} is definable in \mathcal{L} without the horizontal order.
We say that a property of trees is order invariant iff it does not depend on the horizontal order.

A logic \mathcal{L} is order invariant if every order invariant property definable in \mathcal{L} is definable in \mathcal{L} without the horizontal order.

Some facts

- MSOL is order invariant over ranked trees.
- MSOL is not order invariant over unranked trees.
- MSOL order invariant \equiv MSOL+counting modulo [Courcelle].
- FOL is not order invariant even over ranked trees.
- FOL[succ] is order invariant over ranked trees [Benedikt & Segoufin].
Objectives

- Decidable characterisations of logical fragments
 - Study confusions
 - CTL
- Understanding the power of order invariance
 - What is order invariant $\text{FO}[\leq_H, \leq_V]$?
- What is expressible with finite base
 - Beyond CTL.
- Profinite approach to varieties of trees
 - Delay theorem for trees.